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Chapter 1

Introduction

This habilitation thesis consists of 5 papers, which can be grouped into 2 categories.
The first category deals with approximation problems for rational functions and the
second one is concerned with with eigenvalue asymptotics of truncations of continuum
Schrödinger operators.

The papers related to approximation problems for rational functions are 1) Or-
thogonal rational functions with real poles, root asymptotics, and GMP matrices; 2)
Asymptotics of Chebyshev rational functions with respect to subsets of the real line and
3) Finite-Gap CMV Matrices: Periodic Coordinates and a Magic Formula deal with
L2- and L∞-approximation problems for rational functions. In the L2-setting, we re-
strict our attention to measures that are supported on the real line or the unit circle,
so that we can also study associated self-adjoint and unitary operators, respectively.
These results are presented in Section 1.1.3, 1.1.4 and 1.1.5. Section 1.1.1 is of prelim-
inary nature and aims to provide an overview on existing results and should motivate
the results presented in this thesis.

Eigenvalue asymptotics of truncations of continuum Schrödinger operators are dis-
cussed in Section 1.2. It summarizes the results from the papers 4) Stahl–Totik regular-
ity for continuum Schrödinger operators and 5) Asymptotics for Christoffel functions
associated to continuum Schrödinger operators. The latter paper builds on the former
one, as well as the preprint An approach to universality using Weyl m-functions, which
is not part of this habilitation thesis but for completeness reviewed in Section 1.2.2.

The papers in this habilitation thesis arose in collaboration with Jacob S. Chris-
tiansen, Milivoje Lukić, Tom Vandenboom and Giorgio Young. I am deeply grateful to
all of them for inspiring discussions and collaborations.

1.1 Extremal rational functions

This section is concerned with extremal rational functions. We start with some termi-
nology. We will mainly be interested in associated self-adjoint operators. Thus, poles
and spectral sets will be subsets of R = R ∪ {∞}.

For c ∈ R we denote

r(z, c) =
{ 1

c−z , c ̸= ∞,

z, c = ∞.

We fix a compact proper subset E ⊂ R containing infinitely many points, and a sequence
C = (ck)∞

k=1 with ck ∈ R \ E. The sequence C can have repetitions, which are used to
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2 1.1. Extremal rational functions

designate multiplicity: we consider the spaces of rational functions Ln defined by

Ln =
{
P (z)
Rn(z) : P ∈ Pn

}
, (1.1)

where Pn denotes the set of polynomials of degree at most n and

Rn(z) =
∏

1≤k≤n
ck ̸=∞

(z − ck). (1.2)

Of course, the spaces Ln could also be defined iteratively by

Ln = span
{
r(z, cn)dn

}
⊕ Ln−1, L0 = {1},

where dn denotes the multiplicity of the pole cn up to that point,

dn =
∑

1≤k≤n
ck=cn

1.

The case E being a compact subset of R and ck ≡ ∞ leads to polynomials, i.e.,
Ln = Pn for all n. Let ∥ · ∥E denote the sup-norm on E and for a probability measure µ
with suppµ ⊂ R, we denote by ∥ · ∥L2(µ) the corresponding L2(R, µ)-norm. In this case
we assume that ck ∈ R \ suppµ. In the context of this section we will be concerned
with 4 different extremal problems:

Problem 1 (Orthogonal extremal problem).

κn(cn) := sup{Reλ | ∃h ∈ Ln−1, ∥λr(·, cn)dn + h∥L2(µ) ≤ 1}. (1.3)

By strict convexity of the L2-norm, the extremal problem has a unique maximizer,
which will be denoted by τn. By the nature of the Gram–Schmidt process, it can be seen
that τn corresponds to the orthonormal rational function for the increasing sequence of
spaces Ln. In particular, for ck ≡ ∞, we obtain the orthonormal polynomials associated
to µ.

Problem 2 (Christoffel extremal problem). For x∗ ∈ R \ {ck : 1 ≤ k ≤ n},

κn(x∗) := sup{Re f(x∗) | f ∈ Ln, ∥f∥L2(µ) ≤ 1}.
We adopt the name Christoffel extremal problem, since for the case Ln = Pn, the

reciprocal of κn(x∗) is typically called the Christoffel-function.
The corresponding problems for the sup-norm are:

Problem 3 (Chebyshev extremal problem).

mn(cn) := sup{Reλ | ∃h ∈ Ln−1, ∥λr(·, cn)dn + h∥E ≤ 1}.

Problem 4 (Residual extremal problem). For x∗ ∈ R \ (E ∪ {ck : 1 ≤ k ≤ n}),

mn(x∗) := sup{Re f(x∗) | f ∈ Ln, ∥f∥E ≤ 1}.
In the literature, the above stated problems are most intensively studied in the

polynomial case Ln = Pn. One goal of the papers [19, 20] is to provide a unified
perspective on the subject.

There is a vast literature on orthogonal and Chebyshev polynomials. Thus, the
following is a very partial list of references: For a book reference on orthogonal rational
functions, we refer to [4]. For Chebyshev polynomials associated to subsets of R we
recommend the survey [45], the recent papers [7, 8] and the recent survey article [9].
For Problem 4 in the polynomial setting see [10] and also [16, 21].
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1.1.1 Extremal polynomials, periodic coordinates and a magic for-
mula

In this section, we recall certain aspects of the theory of orthogonal polynomials. We
call a measure µ trivial, if it is a finite sum of dirac masses and non-trivial otherwise.
Let µ be a non-trivial probability measure with compact support in C and denote
E = suppµ its topological support. Orthonormal polynomials can be obtained from
(1.3) by setting Ln = Pn. In this case we get

κn(∞) = sup{Reλ | P (z) = λzn +Q(z), Q ∈ Pn−1, ∥P∥L2(µ) ≤ 1}.

The unique maximizer is the orthonormal polynomial of degree n associated to µ and
will be denoted by pn(z).

Jacobi matrices and Favard’s theorem

We will now restrict our attention to the case that suppµ is a compact subset of R.
Then, there exist an > 0, bn ∈ R such that the orthonormal polynomials satisfy

zpn(z) = an+1pn+1(z) + bnpn(z) + an−1pn−1(z), n ≥ 1, (1.4)
zp0(z) = a1p1(z) + b0p0(z).

Let Mz = Mz,µ denote the multiplication operator in L2(µ). Then (1.4) says that the
matrix representation of Mz with respect to the orthonormal basis (pn)∞

n=0 is of the
form

J = J(((an+1, bn))∞
n=0) =




b0 a1 0 0 0
a1 b1 a2 0 0
0 a2 b2 a3 0
0 0 . . . . . . . . .



. (1.5)

The coefficients ((an+1, bn))∞
n=0 are called Jacobi parameters. Since suppµ is compact,

the operator Mz is bounded along with the Jacobi parameter. Thus, if (1.5) is consid-
ered as the matrix representation of J with respect to the standard basis, (en)∞

n=0, of
ℓ2(N0), then J defines a bounded operator on ℓ2(N0) called Jacobi matrix.

Recall that a Herglotz function is an analytic map form C+ := {z ∈ C | Im z > 0}
into C+ ∪R. We will denote the set of all Herglotz functions by N0. Herglotz functions
admit an integral representation. That is, for any f ∈ N0 there exists unique a ∈ R,
b ≥ 0 and a positive measure ν with

∫ dν(ξ)
1+ξ2 < ∞ such that

f(z) = a+ bz +
∫ ( 1

ξ − z
− ξ

1 + ξ2

)
dν(ξ). (1.6)

The measure ν can be recovered from f by Stieltjes inversion formula

lim
ε→0

1
π

∫ d

c
f(t+ iε)dt = 1

2 (ν((c, d)) + ν([c, d])) , (1.7)

for c < d.
Above we have described the map µ 7→ J . Let us now describe the inverse map.

Let an > 0, bn ∈ R be bounded sequences and J be defined by (1.5). Due to the
boundedness of the coefficients, J defines a self-adjoint operator on ℓ2(N0). Define the
Weyl m-function by

m(z) = ⟨(J − z)−1e0, e0⟩. (1.8)
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The function m is a Herglotz function. Let µ be the measure in the integral represen-
tation (1.6) of m. Stated differently, µ is the spectral measure of J corresponding to
the cyclic vector e0. These two maps are inverses of each other. This result is standard
and can be found e.g. [32, Theorem 10.9]

Theorem 1.1 (Favard’s theorem). Let µ be a non-trivial probability measure with
compact support in R, (pn)∞

n=0 the associated orthonormal polynomials and J be defined
by (1.4) and (1.5). If an > 0, bn ∈ R are bounded sequences and J = J(((an+1, bn))∞

n=0),
let µ be the measure in the integral representation of m defined by (1.8). Then the map
µ 7→ J and J 7→ µ are mutually inverses.

Transfer matrices and coefficient stripping

Writing (1.4) into matrix form, we get
(

pn+1(z)
−an+1pn(z)

)
= a(z, an+1, bn)

(
pn(z)

−anpn−1(z)

)

where
a(z, a, b) =

(
z−b

a
1
a

−a 0

)
.

In particular, defining the transfer matrix An(z) by

An(z) := a(z, an, bn−1) · · · a(z, a1, b0),

we see that (
pn(z)

−anpn−1(z)

)
= An(z)

(
1
0

)
.

The second column of An(z) is given in terms of the orthonormal polynomials of the
second kind

qn(z) :=
∫
pn(ξ) − pn(z)

ξ − z
dµ(ξ), (1.9)

with a0q−1(z) = −1 by convention. By means of (1.4) and (1.9) one gets
(

qn(z)
−anqn−1(z)

)
= An(z)

(
0
1

)
,

that is

An(z) =
(

pn(z) qn(z)
−anpn−1(z) −anqn−1(z)

)
. (1.10)

The transfer matrix also plays an important role in order to describe shifts of Weyl
m-functions. Let J (n) denote the Jacobi matrix which is obtained from J by stripping
the first n rows and columns. To be precise, denote by S+ the right-shift operator on
ℓ2(N0), acting on the standard basis by S+en = en+1. Then

J (n) = (S∗
+)nJ(S+)n.

If m(n) denotes the corresponding Weyl m-function, then it can be seen that

m(1)(z) = −1
z − b0 + a2

1m(z) , (1.11)
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see e.g. [44, Theorem 3.2.4.]. It will be convenient to write this in projective coordinates
of the Riemann sphere C. For u, v ∈ C2, we write u ∼ v, if there exists λ ∈ C such that
u = λv. In projective coordinates, we can rewrite (1.11) as

(
m(z)

1

)
∼ a(z, a1, b0)

(
m(1)(z)

1

)
.

Iterating this, yields
(
m(z)

1

)
∼ An(z)

(
m(n)(z)

1

)
. (1.12)

Direct and inverse spectral theory of periodic Jacobi matrices

If J is periodic, the relation (1.12) becomes particularly relevant. We will assume in
this section that there exists q > 0 such that for all n

an+q = an and bn+q = bn.

As will become clear below, it is more natural in this context to extend J by periodicity
to an operator on ℓ2(Z). That is, let J be an operator acting on ℓ2(Z), whose matrix
representation in the standard basis is

J =




. . . . . .

. . . b−2 a−1
a−1 b−1 a0

a0 b0 a1
a1 b1 a2

a2
. . . . . .
. . .




.

We will use the term half-line for operators acting on ℓ2(N0) and full-line for operators
acting on ℓ2(Z). Let ℓ2+ = ℓ2(N0), ℓ2− = ℓ2(Z<0) and P± denote the orthogonal pro-
jections from ℓ2(Z) onto ℓ2± and J± = P±JP± and let en, n ∈ Z, denote the standard
basis of ℓ2. Moreover, define the finite range operator F : ℓ2(Z) → ℓ2(Z) by

F (v) = ⟨v, e0⟩e−1 + ⟨v, e−1⟩e0.

With this notation we have

J = J+ ⊕ J− + a0F. (1.13)

Let m± denote the Weyl m-functions associated to J±. Combining (1.12) with period-
icity, we get:

Theorem 1.2. Let J be a q-periodic full-line Jacobi matrix and m± be defined as above.
Then m+ is a solution of

Aq(z)21m(z)2 + (Aq(z)22 − Aq(z)11)m(z) − Aq(z)12 = 0, (1.14)

where Aq(z)ij denote the entries of the transfer matrix Aq(z). Moreover, the second
solution is given by (a2

0m−(z))−1.
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Proof. We will only show that m+ is a solution of (1.14). That (a2
0m−(z))−1 is the

second solution of (1.14) can be found for instance in [44, Theorem 5.2.2.]
Periodicity implies that J (q)

+ = J+ and m
(q)
+ = m+. Thus, (1.12) yields

m+(z) = Aq(z)11m+(z) + Aq(z)12
Aq(z)21m+(z) + Aq(z)22

,

which is (1.14).

Periodic discriminant

Define

∆(z) := tr Aq(z) = pq(z) − a0qq−1(z). (1.15)

Clearly, ∆ is a polynomial of degree q and is called the (polynomial) discriminant.
In view of (1.19) and (1.20) below, it is clear that studying ∆ is essential in order
to describe the spectrum of J+ and J . We collect the crucial properties of ∆ in the
following theorem. These properties are for instance proved in [32, Section 10.10.].
Theorem 1.3. Let ∆ be defined by (1.15). Then it holds that

(i) For all z ∈ C ∆(z) = ∆(z);

(ii) All zeros of ∆ are real and simple;

(iii) ∆′(c) = 0 implies c ∈ R and |∆(c)| ≥ 2;
In particular, for

E := ∆−1([−2, 2]) = {z ∈ C | ∆(z) ∈ [−2, 2]} (1.16)

it holds that

E ⊂ R. (1.17)

We will see below that σess(J+) = σ(J) = E. In general, E is the union of g disjoint
intervals, where 0 ≤ g ≤ p− 1. We will write E in the form

E = [b0,a0] \
g⋃

j=1
(aj ,bj), (1.18)

where b0 < a1 < b1 < · · · < bg < a0. The sets (aj ,bj) are called gaps of E. If for
some critical point c we have |∆(c)| = 2, we refer to it as a closed gap. Subsets of E
on which ∆ is monotonic are called bands of E. To be precise, let A = ∆−1((−2, 2)). If
(c, d) is some connected component of A, then [c, d] is called a band of the spectrum.
Note that two bands join, if and only if the gap is closed. We say that all gaps are
open, if for every critical point c it holds that |∆(c)| > 2. Note that this corresponds
exactly to the case that g = p− 1.

By Theorem 1.3, all solutions of ∆(z)2 = 4 belong to [b0,a0] and we can thus choose
an analytic branch of

√
∆(z)2 − 4 on C \ (−∞,a0], so that

√
∆(z)2 − 4 > 0 for z > a0.

With this choice of the square root, using that det Ap(z) = 1, Theorem 1.2 and (1.10),
one obtains

m+(z) = −β(z) −
√

∆(z)2 − 4
2aqpq−1(z) , β(z) = pq(z) + aqqq−1(z) (1.19)

and the second solution of the quadratic equation yields

− 1
a2

0m−(z) = β(z) +
√

∆(z)2 − 4
2aqpq−1(z) . (1.20)
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Figure 1.1: Discriminant of a 4-periodic Jacobi matrix

Dirichlet divisors and isospectral torus

In the following, we will find the spectrum of J and J+ and characterize the spectral
data that allows to solve the inverse problem, i.e., to uniquely recover J and J+. Let
us define

gn,m(z) = ⟨(J − z)−1em, en⟩.
For a full-line Jacobi matrix J on ℓ2, the vectors {e−1, e0} are cyclic for J , and we are
thus led to consider the matrix-valued M -function

M(z) =
(
g−1,−1(z) g−1,0(z)
g0,−1(z) g0,0(z)

)
.

A calculation using the second resolvent identity and (1.13) shows that

M(z) =
(
m−(z)−1 a0

a0 m+(z)−1

)−1

. (1.21)

In particular,

− 1
g−1,−1(z) = − 1

m−(z) + a2
0m+(z), − 1

g0,0(z) = − 1
m+(z) + a2

0m−(z) (1.22)

and

g0,0(z) = m+(z)
m−(z)g−1,−1(z). (1.23)

Combining (1.19), (1.20) and (1.22) we get

g−1,−1(z) = − pq−1(z)
a0

√
∆2 − 4

, g0,0(z) = − qq(z)√
∆2 − 4

. (1.24)

We say that a full-line Jacobi matrix J is reflectionless on a set A ⊂ R, if for a.e.
ξ ∈ A

m+(ξ + i0) = 1
a2

0m−(ξ + i0)
, (1.25)
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where f(ξ + i0) = limy↓0 f(ξ + iy) denotes the a.e. existent normal boundary values
of a Herglotz function. It follows from the explicit formulae (1.19) and (1.20) that a
periodic Jacobi matrix J is reflectionless on E given by (1.16).

Lemma 1.4. Let J be a q-periodic full-line Jacobi matrix, E = ∆−1([−2, 2]). Then J
is reflectionless on E.

Zeros of pq−1 are called Dirichlet eigenvalues, since they correspond to eigenvalues
of the truncation of J+ onto ℓ2({0, · · · , q − 2}). In principle, due to (1.19) and (1.20),
poles of m+ and (a2

0m−)−1 can occur at Dirichlet eigenvalues. However, it turns out
that Dirichlet eigenvalues that belong to E do not lead to poles of these functions and
if a Dirichlet eigenvalue belongs to R \ E, then it is either a pole of m+ or a pole of
(a2

0m−)−1 and not of both:

Lemma 1.5. Assume that pq−1(x) = 0 or qq(x) = 0, then |∆(x)| ≥ 2. Moreover,
if A = ∆−1((−2, 2)), then there is exactly one Dirichlet eigenvalue in each connected
component of [b0,a0]\A. If x is a Dirichlet eigenvalue such that x ∈ (aj ,bj), 1 ≤ j ≤ g,
then x is either a pole of m+ or a pole of (a2

0m−)−1.

Proof. The first statement is a direct consequence of det Aq = 1 and the AM-GM
inequality. A standard Herglotz function argument shows that the zeros of ∆ and
pq−1 strictly interlace, which implies the second statement. Finally, if m+ and (m−)−1

would have a pole, (1.23) and (1.24) would imply that g0,0 has a pole, contradicting
(1.24).

This motivates the following definition. Let xj denote the Dirichlet eigenvalue in
[aj ,bj ], 1 ≤ j ≤ g1. Then we set

εj =
{

−1, if xj ∈ (aj ,bj) and xj is a pole of (a2
0m−)−1

1, otherwise.

There is a certain ambiguity, since we set εj = 1, if xj ∈ {aj ,bj}. This is somewhat
arbitrary and is only for definiteness, as will become clear below. The collection of all
Dirichlet eigenvalues together with the marker εj is called Dirichlet divisor

D = ((xj , εj))g
j=1.

Together with E, it allows us to uniquely recover, J, J+, J−. We collect the full spectral
characterization in the following theorem; see [32, Theorem 10.77.,Theorem 10.82.]

Theorem 1.6. Let J be a q-periodic full-line Jacobi matrix, E = ∆−1([−2, 2]) and D
the associated Dirichlet divisor. Then the following holds:

(i) J has purely absolutely continuous spectrum of multiplicity 2 and is given by
σ(J) = E,

(ii) J+ has simple spectrum and it holds

a) The essential spectrum is given by σess(J+) = E,
b) The discrete spectrum is given by

σd(J+) = {xj | xj is Dirichlet eigenvalue in (aj ,bj) and εj = 1}.
1Note that we do not consider Dirichlet eigenvalues that belong to closed gaps.
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(iii) J can be uniquely recovered from E and D via the formulae

a2
0m+(z) = 1

2


− 1

g−1,−1(z) − (z + α) +
g∑

j=1

εjσj

xj − z


 (1.26)

− 1
m−(z) = 1

2


− 1

g−1,−1(z) + (z + α) +
g∑

j=1

εjσj

xj − z




where

σk =

√∏g
j=0(xk − aj)(xk − bj)
∏

k ̸=j(xk − xj) , and, α = −1
2


a0 + b0 +

g∑

j=1
(aj + bj − 2xj)


 .

Remark 1.7. (i) By (1.24), g−1,−1 is determined byD and E. Moreover, sincem+(z) =
−1

z + o(1), for z → ∞, we can recover a0 from (1.26). Thus, we get m±, which by
Favard’s theorem allows to uniquely recover J± and a0. By (1.13) this uniquely
allows to recover J . Thus, if E is fixed, the map J 7→ D is injective.

(ii) Although we have argued with the explicit formulae in terms of orthonormal
polynomials, which was possible due to the periodicity of J , it can be shown that
the crucial properties that are required to prove Theorem 1.6 is (1.21) and the
fact that J is reflectionless on E. This will become important below, where we will
associate Jacobi matrices to spectral sets that are not necessarily spectral sets of
periodic Jacobi matrices.

Let us define the set of all Dirichlet divisors by

D(E) = {((xj , εj))g
j=1 | xj ∈ [aj ,bj ], εj ∈ {−1, 1}, 1 ≤ j ≤ g}/ ∼, (1.27)

with the identification (xj , 1) ∼ (xj ,−1), if xj ∈ {aj ,bj} and equip it with the product
topology of circles. We have described the map from periodic Jacobi matrices with
spectrum E into D(E) and showed that this map is injective. For the given E, we define
the isospectral torus of Jacobi matrices by

T J
E := {J | J is full-line periodic Jacobi matrix with σ(J) = E}. (1.28)

By construction of the set E, we see that T J
E is not empty. Moreover, we have seen

that the map periodic Jacobi matrix to its Dirichlet divisor is an injective map from
T J

E into D(E). But much more is true:

Theorem 1.8. The map J 7→ D sets up a bijection between T J
E and D(E). If we equip

T J
E with the strong operator topology and D(E) with the product topology of circles, then

this map is a homeomorphism.

The proof can be found e.g. in [44, Section 5.13.] and in a much more general
setting in [46]. This shows that T J

E is homeomorphic to Tg, which justifies the name
isospectral torus.
Example 1.9. If E = [−2, 2], then T J

E consists of the single “free” Jacobi matrix J0,
whose Jacobi coefficients are given by an ≡ 1 and bn ≡ 0.

Note that J0 = S + S−1, where S denotes the right shift operator on ℓ2, defined by
Sen = en+1. The following characterization of T J

E bears the name “magic formula”:
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Theorem 1.10. Let J be a full-line Jacobi matrix and let E be the spectrum of a
q-periodic Jacobi matrix with discriminant ∆. Then the following holds

J ∈ TJ(E) ⇐⇒ ∆(J) = Sq + S−q. (1.29)

Note that Sq + S−q can be viewed as a matrix version of J0, where the 1 and 0
coefficients are substituted by the q × q identity and zero matrix. This point of view
of considering ∆(J) as a block Jacobi matrix with matrix coefficients will be crucial
below.

This description is only possible if we a priori assume that E is the spectrum of
a periodic Jacobi matrix. In this case we have seen that there exists a polynomial
discriminant. However, this gives a strong restrictions on E. In particular, a generic
union of intervals will not be the spectrum of a periodic Jacobi matrix as the following
theorem shows. Let Ω = C \ E and GE(z,∞) denote the potential theoretic Green
function of Ω with pole at ∞. That is, the unique harmonic function in Ω \ {∞} which
has vanishing boundary values on E and satisfies GE(z,∞) = log |z| +O(1) as z → ∞.
Moreover, let ωE(A, z) denote the harmonic measure of Ω, the set A ⊂ E and the point
z ∈ Ω. For later reference, we formulate the following theorem for sets E, which are
arbitrary union of g intervals written in the form (1.18). Let us denote Ek = E∩[b0,ak].
Then we have

Theorem 1.11. Let E ⊂ R with no isolated points and assume that there exists a
polynomial, P , of degree q such that P−1([−2, 2]) = E. Then

B(z) = P (z) −
√
P (z)2 − 4
2 ,

is a function on Ω. Moreover, we have

log |B(z)| = −qGE(z,∞)

and for 1 ≤ k ≤ g, qωE(Ek,∞) ∈ N. This holds if and only if E is the spectrum of a
q-periodic Jacobi matrix.

Proof. Recall that the Joukowsky map f(ζ) = ζ+ 1
ζ maps D conformally onto C\[−2, 2].

Let g(u) = u−
√

u2−4
2 , denote its inverse. Since by assumption P maps Ω into C\ [−2, 2],

B(z) = g(P (z)) is a well defined function in Ω. By construction |B| ≤ 1 in Ω, and
|B(z)| → 1 as z → E. By the asymptotic behavior for GE at ∞, we see that

log |B(z)| + qGE(z,∞)

is harmonic in Ω and vanishes on the boundary, and thus by the maximum principle
vanishes identically. Computing the change of the argument of GE(z,∞) when it circles
around Ek and the fact that B is a single valued function, implies the statement about
the harmonic measure. If E is the spectrum of a q-periodic Jacobi matrix, then we can
choose P = ∆. We refer to [44, Theorem 5.5.25.] for the other direction of the last
statement.

The Damanik–Killip–Simon approach and the Yuditskii discriminant

We start this section with a classical result of Szegő. Let µ be a non-trivial probability
measure supported on ∂D = {z ∈ C | |z| = 1} and let Φn denote the monic orthogonal
polynomials in L2(µ). These polynomials obey the recursive relation

Φn+1(z) = zΦn(z) − αnΦ∗
n(z),
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with uniquely determined αn ∈ D = {z ∈ C | |z| < 1}, where Φ∗
n(z) = znΦn(1/z).

In this context, the coefficients αn are called Verblunsky coefficients. Let fµ denote
the density of µ with respect to the normalized Lebesgue measure on ∂D. Then the
following statement holds:

∞∑

n=0
|αn|2 < ∞ ⇐⇒

∫
log(fµ(θ))dθ

2π > −∞. (1.30)

Szegő’s theorem represents what Simon calls a gem of spectral theory [44, Section 1.4]: a
one-to-one correspondence between a class of measures and a class of coefficients. This
theorem can also be interpreted in terms of certain unitary operators, called CMV
matrices as will be discussed later in this introduction. Remarkably, this theorem has
an analog for self-adjoint operators, that was proved by Killip and Simon [26].

Theorem 1.12. Let µ be a compactly supported real probability measure with half-line
Jacobi matrix J+ and Jacobi parameters ((an+1, bn))∞

n=0 and write dµ = fµ(ξ)dξ+dµs.
Then

∞∑

n=0
|an+1 − 1|2 + |bn|2 < ∞ (1.31)

if and only if

(i) σess(J+) = [−2, 2],

(ii)
∫ 2

−2
log(fµ(ξ))

√
dist(ξ,R \ [−2, 2])dξ > −∞,

(iii) The eigenvalues ξn ̸∈ [−2, 2] obey
∞∑

n=0

√
dist(ξn, [−2, 2])

3
< ∞.

This has been generalized by Damanik, Killip and Simon to arbitrary spectral sets
of periodic Jacobi matrices, with the additional assumption that all gaps are open.
In order to formulate the result, we need a notion of convergence to the isospectral
torus, which will substitute (1.31). Recall that TJ([−2, 2]) = {J0} and note that (1.31)
means that J − J0 is a Hilbert-Schmidt operator. The generalization of Theorem 1.12
is formulated in terms of half-line operators. The isospectral torus of half-line Jacobi
matrices is defined similarly to (1.28):

T J+
E = {J+ | J+ is half-line periodic Jacobi matrix with σess(J+) = E}.

On bounded half-line Jacobi matrices J+, we consider the metric

d(J+, J̃+) =
∞∑

k=0
e−k(|ak+1 − ãk+1| + |bk − b̃k|). (1.32)

On norm-bounded sets of Jacobi matrices, convergence in this metric corresponds to
strong operator convergence. However, instead of distance to a fixed Jacobi matrix J̃+,
we will consider the distance to T J+

E ,

d(J+, T J+
E ) = inf

J̃+∈T J+
E

d(J+, J̃+) = min
J̃+∈T J+

E

d(J+, J̃+).

Then, the generalization of Theorem 1.12 for periodic Jacobi matrices is the follow-
ing:
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Theorem 1.13. Let E be the spectrum of a periodic Jacobi matrix such that all gaps
are open. Let µ be a compactly supported real probability measure with half-line Jacobi
matrix J+ and denote dµ = fµ(ξ)dξ + dµs. Then

∞∑

n=0
d((S∗

+)nJ+(S+)n, T J+
E ) < ∞ (1.33)

if and only if

(i) σess(J+) = E,

(ii)
∫ 2

−2
log(fµ(ξ))

√
dist(ξ,R \ E)dξ > −∞,

(iii) The eigenvalues ξn ̸∈ E obey
∞∑

n=0

√
dist(ξn,E)

3
< ∞.

Besides its own interest, the main reason for mentioning these results is the approach
that allowed to extend Theorem 1.12 to Theorem 1.13. The proof of Theorem 1.13
essentially consists of four steps. Let us briefly recall that a block Jacobi matrix is of
the form

J =




w0 v0
v∗

0 w1 v1
v∗

1 w2 v2

v∗
2

. . . . . .

. . .




(1.34)

where vj and wj are d× d matrices, wj = w∗
j , and det vj ̸= 0 for each j. Type 3 block

Jacobi matrices have each vj lower triangular and positive on the diagonal. If J is a
d× d-block Jacobi matrix, then it has a d× d-spectral measure dΞ. Note that if J+ is
a Jacobi matrix, then for a periodic discriminant of degree q, ∆(J+) is a q × q block
Jacobi matrix.

Let us now outline the proof of Theorem 1.13. Recall that ∆ is the discriminant
for the spectrum E of a periodic Jacobi matrix.

1. Prove a version of Theorem 1.12 for block Jacobi matrices. The analogous coef-
ficient condition (1.31) in this theorem is J − (Sq

+ + (S∗
+)q) is a Hilbert Schmidt

operator,

2. Apply this block version to the block Jacobi matrix ∆(J+),

3. Translate the condition on the matrix spectral measure of ∆(J+) into a condition
on the spectral measure of J+,

4. Translate the condition ∆(J+) − (Sq
+ + (S∗

+)q) is a Hilbert–Schmidt operator into
a condition on the Jacobi coefficients of J+.

In all these steps, the technically most challenging part is step 4, since the coeffi-
cients of J+ appear in ∆(J+)− (Sq

+ +(S∗
+)q) in a very complicated way. It is important

to mention that this approach relies in a crucial way on existence of the function ∆,
which, due to the magic formula (1.29), maps any element of the isospectral torus
to the block Jacobi matrix version of J0. This provides a serious obstacle to extend
the Damanik–Killip–Simon approach to other spectral sets, such as arbitrary union of
intervals.
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The isospectral torus of finite-gap sets and the Yuditskii discriminant

In this section we will discuss spectral sets, E, that are arbitrary finite union of intervals.
We will refer to them in the following as finite-gap sets. In particular, we do not assume
that there exists a periodic Jacobi matrix with the given spectral set. Still we write
E in the form (1.18). Clearly, the definition of D(E) (1.27) carries over to this setting
without change. It is not so immediately clear, how to define the isospectral torus T J

E
of Jacobi matrices in this setting. As already indicated above, the property of being
reflectionless is the key to extend the notion of isospectral torus to arbitrary finite-gap
sets.

T J
E = {J | J is full-line reflectionless Jacobi matrix on E and σ(J) = E}. (1.35)

It can then be shown, that T J
E can equivalently be given by

T J
E = {J | J is full-line almost periodic Jacobi matrix with σ(J) = σac(J) = E}.

Using definition (1.35), the spectral characterization of Theorem 1.6 for elements of T J
E

still holds without change. It also still holds that T J
E and D(E) are homeomorphic, so

that T J
E can be identified with a g-dimensional torus, where g is the number of gaps

of E. However, it was seen in Theorem 1.11 that existence of a polynomial P with
P−1([−2, 2]) = E imposes a strong restriction on the harmonic measure of Ek, and thus
generically does not hold for arbitrary finite-gap sets.

In [53], Yuditskii overcame this issue by introducing a rational discriminant in terms
of the Ahlfors function at ∞. Let Ω = C\E. The Ahlfors function is the unique analytic
function, w : Ω → D, with w(∞) = 0 which maximizes Re(zw(z))|z=∞. The Ahlfors
function at ∞ will be denoted by w∞. Moreover, letGE(z, z0) denote the Green function
of the domain Ω with pole at z0. We collect properties of the Ahlfors function and the
Yuditksii discriminant in the following theorem:

Theorem 1.14. Let E be a finite-gap set written as in (1.18) and w∞ the Ahlfors
function for Ω = C \ E at ∞. Then for 1 ≤ j ≤ g there exists cj ∈ (aj ,bj) such that
w∞(z) = 0 if and only if z ∈ {∞, c1, · · · , cg}. It holds that

− log |w∞(z)| = GE(z,∞) +
g∑

j=1
GE(z, cj).

If
∆E(z) := w∞(z) + 1

w∞(z) ,

then

∆E(z) = λg+1z + d+
g∑

j=1

λj

cj − z
, λj > 0 (1.36)

and

∆−1
E ([−2, 2]) = E (1.37)

Moreover, ∆E is the unique rational function in N0 with ∆E(∞) = ∞ such that (1.37)
holds.
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If J is a Jacobi matrix and c ∈ R \ σ(J), then (c − J)−1 is an infinite band matrix.
This suggests that in order to apply the Damanik–Killip–Simon approach with the
rational Yuditskii discriminant it is required to use operators that are suitable for the
rational function ∆E. This is achieved by using orthogonal rational functions instead
of orthogonal polynomials.

Fix a vector Cg+1 = (c1, . . . , cg+1) with no repetitions such that ck∞ = ∞ for some
1 ≤ k∞ ≤ g + 1 and let C = (ck)∞

k=1 be the sequence obtained from Cg+1 by periodic
repetition, i.e., ck = cj if and only if k = j mod (g + 1). Let τn be the sequence
of orthogonal rational functions as in Problem 1.3 associated to C. A half-line GMP
matrix [53] is the matrix representation of the multiplication operator Mz,µ in the basis
(τn)∞

n=0; its matrix elements are

Amn =
∫
ξτn(ξ)τm(ξ) dµ(ξ). (1.38)

The condition that ck∞ = ∞ for some k∞ guarantees that Amn = 0 for |m − n| >
g + 1, so these matrix elements generate a bounded operator A on ℓ2(N0) such that
Amn = ⟨Aen, em⟩. We say that A ∈ A(Cg+1).

GMP matrices have the property that some of their resolvents are also GMP matri-
ces; namely, for any k ̸= k∞, (ck −A)−1 ∈ A(f(Cg+1)) where f is the Möbius transform
f : z 7→ (ck − z)−1 and f(Cg+1) = (f(c1), . . . , f(cg)). Note that the special case g = 0,
C1 = (∞) gives precisely a Jacobi matrix.

Similar to Jacobi matrices, GMP matrices have a very special structure that allows
to give a definition of a full-line GMP matrix associated to a fixed finite sequence of
poles Cg+1 as above:

Definition 1.15. Fix a finite sequence Cg+1 = (c1, . . . , cg,∞)2 and let X− denote
the upper triangular part of a matrix X (excluding the diagonal), and X+ the lower
triangular part (including the diagonal). Then we say that a full-line operator A is
GMP structured, and denote it by A ∈ A, if it is a (g + 1)-block Jacobi matrix

A =




. . . . . . . . .
A∗

−1 B−1 A0
A∗

0 B0 A1
. . . . . . . . .




(1.39)

such that

Aj = δgp⃗j
∗, Bj = (q⃗j p⃗j

∗)− + (p⃗j q⃗j
∗)+ + Ĉ, p⃗j , q⃗j ∈ Rg+1,

and

Ĉ =




c1
. . .

cg

0



, p⃗j =




p
(j)
0
...
p

(j)
g


 , q⃗j =




q
(j)
0
...
q

(j)
g


 , p(j)

g > 0.

We then say an operator A ∈ A is a full-line GMP matrix, if the resolvents (cℓ −A)−1

exist for all 1 ≤ ℓ ≤ g and S−ℓ(cℓ −A)−1Sℓ ∈ A. In this case we write A ∈ GMP(Cg+1).
Again we call the generating coefficients (p⃗j , q⃗j)j∈Z the GMP coefficients of A.

2The splitting into (g + 1) × (g + 1) blocks is at the position of k∞. Therefore, to simplify the
definition we assume that k∞ = g + 1.
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Let us note some special properties of GMP matrices. A ∈ GMP(Cg+1) is a 2g + 3
diagonal matrix. However, on the most outer diagonal only one entry in each block is
non-vanishing, namely

p(j)
g = ⟨Ae2g+1+j(g+1), eg+j(g+1)⟩ > 0. (1.40)

However, in contrast to Jacobi matrices, where taking higher powers of J increases
the number of non-trivial diagonals, by forming resolvents (cℓ − A)−1, GMP matrices
stay in the same class. Only the position of the non-vanishing entry at the most outer
diagonal is shifted.

For Cg+1 and E fixed, we define the isospectral torus of full-line GMP matrices by

TE(Cg+1) = {A ∈ GMP(Cg+1) | A is g+1 periodic and σ(A) = E}. (1.41)

For an arbitrary choice of poles, TE(Cg+1) may be empty. However, the Ahlfors function
provides a choice of poles so that TE(Cg+1) is always non-empty. If ck, for 1 ≤ k ≤ g+1,
denote the zeros of the Ahlfors function associated to the set E as described in Theorem
1.14, then we use the notation CE = (c1 · · · , cg,∞). In this case, TE(CE) is up to
a certain identification in bijective correspondence to the isospectral torus of almost
periodic Jacobi matrices T J

E as defined in (1.35). Moreover, the Yuditskii discriminant
allows to characterize TE(CE) in terms of a magic formula:

A ∈ TE(CE) ⇐⇒ ∆E(A) = Sg+1 + S−(g+1).

With this in hand, the Damanik–Killip–Simon approach is applicable for GMP matrices
and is successfully applied in [53] to prove Theorem 1.13 for spectral sets E being an
arbitrary union of intervals. Again it is proved following the Damanik–Killip–Simon
approach:

1. A block Jacobi version of Theorem 1.12 exists already from Damanik–Killip–
Simon [13],

2. For a given measure µ associate a Jacobi matrix J and a GMP matrix A and
apply the block version of Theorem 1.12 to the block Jacobi matrix ∆E(A),

3. Translating the measure condition is the same as above,

4. Translate the condition ∆E(A) − (Sg+1 + S−(g+1)) is a Hilbert-Schmidt operator
back to conditions for J .

Again, step 4 is the technically most challenging part and is resolved by introducing
the Jacobi flow, which is a certain flow on GMP matrices corresponding to the shift
action S−1JS on the level of Jacobi matrices.

We decided to provide a detailed account on this method for two reasons. First
of all, we believe that it is a strong method in the spectral theory of Jacobi matrices.
Secondly, we successfully applied it in order to settle a conjecture of Simon on regular
Jacobi matrices and the Cesàro–Nevai class, which is part of the habilitation thesis and
will be presented below.

1.1.2 Stahl–Totik regularity and a conjecture of Simon

In this section, we recall the application of potential theory to the asymptotic analysis
of extremal polynomials. Standard references on potential theory are e.g. [1, 37].
Potential theory in C is concerned with the study of subharmonic potentials

Φρ(z) =
∫

log |z − x|dρ(x),
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for some compactly supported probability measure ρ. They enter naturally in studying
growth of polynomials as the degree n → ∞, due to the simple observation that if
Pn(z) = ∏n

j=1(z − zj(n)), then

1
n

log |Pn(z)| = Φρn(z),

where

ρn = 1
n

n∑

j=1
δz(j), (1.42)

denotes the normalized zero counting measure. We will assume that K ⊂ C is compact
and of positive logarithmic capacity, CapK , and define Ω to be the unbounded connected
component of C \K. Therefore, there exists a Green function, GK(z,∞), with pole at
∞. It can be represented in terms of an logarithmic potential by

GK(z,∞) =
∫

K
log |z − x|dρK(x) + γK , (1.43)

where γK = − log(CapK) denotes the Robin constant and ρK the equilibrium measure
of the set K.

Let µ be a non-trivial, real probability measure with compact support and denote
by E its essential support (the support with isolated points removed)

E = ess supp(µ).

Let ((an+1, bn))∞
n=0 denote the associated Jacobi parameters. Then

lim sup
n→∞

(
n∏

ℓ=1
aℓ

)1/n

≤ CapE . (1.44)

The measure µ is called Stahl-Totik regular, if

lim
n→∞

(
n∏

ℓ=1
aℓ

)1/n

= CapE .

Stahl–Totik regularity is equivalent to root asymptotics of orthonormal polynomials:

Theorem 1.16. Let µ be a non-trivial, real probability measure with compact support,
E = ess supp(µ) and (pn)∞

n=0 the associated orthonormal polynomials. Then µ is Stahl-
Totik regular if and only if

lim
n→∞ |pn(z)|1/n = GE(z,∞),

uniformly on compact subsets of C \ [min E,max E].

Let J+ be a half-line Jacobi matrix with Jacobi parameters ((an+1, bn)). J+ belongs
to the Nevai class of E = [−2, 2], if an → 1, bn → 0. It holds that Cap[−2,2] = 1. There-
fore, since by Weyl’s theorem for elements of the Nevai class it holds that σess(J+) =
[−2, 2], the Nevai condition implies regularity. The converse is false. However, in [43]
it is shown that if ess supp(µ) = [−2, 2] and µ is regular, then

lim
N→∞

1
N

N−1∑

n=0
(|an − 1| + |bn|) = 0. (1.45)
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Jacobi matrices satisfying (1.45) are said to belong to the Cesáro-Nevai class of [−2, 2];
cf. [25, 41, 43]. Let E be a finite-gap set and T J+

E denote the isospectral torus of half-
line Jacobi matrices. A half-line Jacobi matrix J+ is said to belong to the Cesáro–Nevai
class of E if

lim
N→∞

1
N

N−1∑

n=0
d((S∗

+)nJ+(S+)n, T J+
E ) = 0.

Applying the Damanik–Killip–Simon approach, Simon extended it to spectra of
periodic Jacobi matrices with all gaps open.

Theorem 1.17. Let E be the spectrum of a periodic Jacobi matrix with all gaps open. If
µ is Stahl–Totik regular on E, then the associated Jacobi matrix belongs to the Cesáro–
Nevai class of E.

Motivated by this, Simon conjectured that Theorem 1.17 extends to arbitrary finite-
gap sets.

Conjecture 1. Let E be a finite-gap set. If µ is Stahl–Totik regular on E, then the
associated Jacobi matrix belongs to the Cesáro–Nevai class of E.

In [19], we developed a theory of Stahl–Totik regularity for orthogonal rational
functions and settled the Simon conjecture by applying the Damanik–Killip–Simon
approach with the Yuditskii discriminant.

1.1.3 Orthogonal rational functions with real poles, root asymptotics,
and GMP matrices

The theory of Stahl–Totik regularity as presented in Section 1.1.2 assigns a special
role to the interior point ∞ of the domain Ω = C \ E, as it is formulated in terms
of orthonormal polynomials and the associated potential theoretic quantities Green
function at ∞, the capacity and the equilibrium measure. In particular, due to this
special role of ∞, it is a non-trivial question, whether the push-forward of a Stahl–Totik
regular measure with respect to a Möbius transform that does not preserve ∞ is again
Stahl–Totik regular. Motivated by Conjecture 1 we were seeking in [19] for a more
conformal invariant theory of Stahl–Totik regularity.

As a direct consequence of our construction, we obtain that the property of being
Stahl–Totik regular is conformally invariant in the following sense: The set of Möbius
transformations which preserve R is the semidirect group product PSL(2,R)⋊{id, z 7→
−z}, whose normal subgroup PSL(2,R) corresponds to the orientation preserving case.
Denote by f∗µ the pushforward of µ, defined by (f∗µ)(A) = µ(f−1(A)) for Borel sets
A.

Theorem 1.18. Let f ∈ PSL(2,R) ⋊ {id, z 7→ −z}. If µ is a Stahl–Totik regular
measure on R and ∞ /∈ supp(f∗µ), then the pushforward measure f∗µ is also Stahl–
Totik regular.

Fix a non trivial probability measures µ with arbitrary suppµ ⊂ R and a finite
sequence with no repetitions, Cg+1 = (c1, . . . , cg+1) with ck ∈ R \ suppµ for all k. Let
(τn)∞

n=0 denote the sequence of orthogonal rational functions obtained as maximizers
of Problem 1 for the sequence of poles obtained from Cg+1 by periodic extension. Let

E = ess suppµ
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and assume for simplicity that E is not polar. Denote by GE(z, z0) the Green function
in Ω = C \ E with pole at z0 and define

GE(z,Cg+1) = 1
g + 1

g+1∑

k=1
GE(z, ck). (1.46)

The growth rate of τn can be bounded from below in terms of GE:

Theorem 1.19. For all z ∈ C \ R,

lim inf
n→∞ |τn(z)|1/n ≥ eGE(z,Cg+1).

Note that for orthonormal polynomials (a1 . . . an)−1 appearing in (1.44) is the lead-
ing coefficient of pn. Recall from Problem 1 that

κn = sup{Reλ | ∃h ∈ Ln−1, ∥λr(·, cn)dn + h∥L2(µ) ≤ 1}.

Since τn = κnr(·, cn)dn + h for h ∈ Ln−1, κn is explicitly characterized as a kind
of leading coefficient for τn with respect to the pole at ck where n = j(g + 1) + k,
1 ≤ k ≤ g+ 1. Below, we will also relate the constants κn to off-diagonal coefficients of
associated GMP matrices leading to a generalization of (1.44) for orthogonal rational
functions.

It is a basic property of the Green function that the limits

γk
E =

{
limz→ck

(GE(z, ck) + log |z − ck|), ck ̸= ∞
limz→ck

(GE(z, ck) − log |z|), ck = ∞

exist. Note that, if ck = ∞, γk
E is precisely the Robin constant for the set E. We further

define constants λk by

log λk = γk
E +

∑

1≤ℓ≤g+1
ℓ̸=k

GE(ck, cℓ).

Theorem 1.20. For all 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

lim inf
j→∞

κ
1/n(j)
n(j) ≥ λ

1/(g+1)
k .

Again Stahl–Totik regularity is now characterized through equality:

Theorem 1.21. The following are equivalent:

(i) For some 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

lim
j→∞

κ
1/n(j)
n(j) = λ

1/(g+1)
k ,

(ii) For all 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

lim
j→∞

κ
1/n(j)
n(j) = λ

1/(g+1)
k ,

(iii)

lim
n→∞




g+1∏

ℓ=1
κn+ℓ




1/n

=




g+1∏

k=1
λk




1/(g+1)

,
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(iv) For q.e. z ∈ E, we have lim supn→∞ |τn(z)|1/n ≤ 1,

(v) For some z ∈ C+, lim supn→∞ |τn(z)|1/n ≤ eGE(z,Cg+1),

(vi) For all z ∈ C, lim supn→∞ |τn(z)|1/n ≤ eGE(z,Cg+1),

(vii) Uniformly on compact subsets of C \ R, limn→∞ |τn(z)|1/n = eGE(z,Cg+1).

Definition 1.22. The measure µ is Cg+1-regular if it obeys one (and therefore all) of
the assumptions of Theorem 1.21.

For the case C1 = (∞) this is exactly Stahl–Totik regularity for orthogonal polyno-
mials. However, for multiple poles we point out that there is a phenomena, which has
no analog for orthogonal polynomials. Namely, control of the growth rate of κn(j) along
a single subsequence allows to control the full sequence. This will be crucial below in
order to characterize Stahl–Totik regularity by only using entries of a GMP matrix A
and not its resolvents.

Moreover, we show that the regular behavior described by Theorem 1.21 is inde-
pendent of the set of poles Cg+1:

Theorem 1.23. Let g, g̃ ∈ N0 and Cg+1, C̃g̃+1 be two finite sequences of elements from
R \ suppµ, not necessarily of the same length. Then µ is Cg+1-regular if and only if it
is C̃g̃+1-regular.

Corollary 1.24. Let suppµ ⊂ R. Let Cg+1 be a finite sequence of elements from
R \ suppµ. Then µ is Cg+1-regular if and only if it is Stahl–Totik regular.

Theorem 1.23 shows that Stahl–Totik regularity is indeed a property of the measure
and not of the particular chosen sequence of rational functions. Thus, Theorem 1.21
should not be seen as describing equivalent conditions for a new class of measures,
but rather a new set of regular behaviors for the familiar class of Stahl–Totik regular
measures.

In the case of orthonormal polynomials pn, it is known that pn has at most one zero
in any connected component of R \ suppµ and no zero in the connected component
of R \ suppµ containing ∞. For orthogonal rational functions the situation is similar.
Write

τn(z) = P (z)
Rn(z) , (1.47)

where Rn is defined as in (1.2). Similar as for polynomials, one can show that P has
at most one simple zero in each connected component of R \ suppµ and no zero in
the connected component which contains ck. However, it can happen that P (cj) = 0,
for j ̸= k. If this happens, we call cj a “generalized zero” of τn. In this case, due to
cancellation, the degree of τn is decreased. However, since this can happen at most for
all cj ̸= ck and zeros are simple, we always have

n− g ≤ deg τn ≤ n. (1.48)

Considering the case C2 = (∞, 0) and a measure which is symmetric with respect to
z 7→ −z shows that cancellation can indeed happen.

Next we turn towards describing the limit distribution of the normalized zero count-
ing measure. We define

νn = 1
n

∑

w:τn(w)=0
δw.
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Although we normalize by n, νn may not be a probability measure: however, due to
(1.48), 1 − g/n ≤ νn(R) ≤ 1. Therefore, normalizing by deg τn instead of by n would
not affect the limits as n → ∞.

In the regular case, limits of νn are described in terms of the harmonic measure.
Let ωE(A, z), denote the harmonic measure of the domain C \ E the set A ⊂ E and
z ∈ C \ E. We define the probability measure on E

ρE,Cg+1 = 1
g + 1

g+1∑

j=1
ωE(·, cj). (1.49)

Theorem 1.25. The following holds:

(a) If µ is Cg+1 regular, then limn→∞ νn = ρE,Cg+1 in the w*-topology of C(R)∗.

(b) If limn→∞ νn = ρE,Cg+1 in the w*-topology of C(R)∗, then µ is Cg+1 regular or
there exists a polar set X ⊂ E such that µ(R \X) = 0.

We turn to applications of Cg+1-regularity for self-adjoint operators. Fix a sequence
Cg+1 = (c1, . . . , cg+1) such that ck∞ = ∞ for some 1 ≤ k∞ ≤ g + 1 and let A ∈
A(Cg+1) be a half-line GMP matrix with matrix elements (1.38). Just as regularity
for Jacobi matrices can be formulated in terms of its off-diagonal entries, we will show
that regularity of a GMP matrix can be characterized in terms of its entries in the
outermost non-trivial diagonal. Half-line GMP matrices have the same block structure
as full-line GMP matrices, except, the splitting of the blocks may be shifted due to the
position of ck∞ in Cg+1. In particular, like in (1.40), the positive entry on outermost
diagonal is

βj = ⟨Ae(j+1)(g+1)+k∞ , ej(g+1)+k∞⟩

Theorem 1.26. Fix a probability measure µ with suppµ ⊂ R and a sequence Cg+1 =
(c1, . . . , cg+1) with ck∞ = ∞. Then

lim sup
j→∞




j∏

ℓ=1
βℓ




1/j

≤ λ−1
k∞ . (1.50)

Moreover, the measure µ is Stahl–Totik regular if and only if

lim
j→∞




j∏

ℓ=1
βℓ




1/j

= λ−1
k∞ . (1.51)

The statement follows by relating the coefficients βj to the constants κk∞+j(g+1).
In the formulation of Theorem 1.26 we see the importance of Theorem 1.21 (i). If
we would need convergence along all subsequence, then instead of (1.50) we would
also need to consider entries of the resolvents (cj − A)−1 for all finite cj ∈ Cg+1.
At the same time, regularity also implies a convergence result similar to (1.50) for the
outermost nonvanishing entries of the resolvents, and thus in fact provides g+1 criteria
for regularity.

With the notion of regularity developed for orthogonal rational functions we are now
able to combine the Damanik–Killip–Simon approach with the Yuditskii discriminant
to prove Conjecture 1:
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Theorem 1.27. Let E ⊂ R be a finite-gap set and T J+
E the associated isospectral torus

of Jacobi matrices. If J+ is a regular half-line Jacobi matrix with σess(J+) = E, then
J+ belongs to the Cesáro–Nevai of E, i.e.,

lim
N→∞

1
N

N∑

m=1
d((S∗

+)mJ+S
m
+ , T J+

E ) = 0. (1.52)

As already mentioned in Section 1.1.2, Theorem 1.27 was proved by Simon for spec-
tra of periodic Jacobi matrices with all gaps open. It was then proved with completely
different methods by Krüger [27] under the additional assumption infn an > 0. While
this is a common assumption in the ergodic literature, regular Jacobi matrices do not
always satisfy it: [41, Example 1.4] can easily be modified to give a regular Jacobi
matrix with spectrum [−2, 2] and inf an = 0. Thus, Theorem 1.27 first settles Simon’s
Conjecture 1 in full generality.

1.1.4 Asymptotics of Chebyshev rational functions with respect to
subsets of the real line

This section will be concerned with the sup-norm problems stated in the beginning
of this introduction. Fix a compact proper subset E ⊂ R containing infinitely many
points. Connected components of R \ E are called gaps of E. We fix a sequence of poles
C = (ck)∞

k=1 with ck ∈ R \ E and consider the associated Chebyshev problem

mn(cn) := sup{Reλ | ∃h ∈ Ln−1, ∥λr(·, cn)dn + h∥E ≤ 1} (1.53)

and for x∗ ∈ R \ (E ∪ {ck : 1 ≤ k ≤ n}), the residual problem

mn(x∗) := sup{Re f(x∗) | f ∈ Ln, ∥f∥E ≤ 1}, (1.54)

where Ln was defined in (1.1).
In contrast to Section 1.1.3, we do not assume that the sequence is periodic. Let

us point out that this assumption was natural and necessary in Section 1.1.3, since
the periodic occurrences of ∞ yielded a finite band structure of the associated GMP
matrices.

We will start with results describing the solutions for fixed n. It is well known
that Chebyshev polynomials of degree n associated to a compact subset of R can
be characterized by the alternation theorem. This characterization yields an explicit
formula that allows to compute asymptotics as the degree tends to ∞; cf. [7, 8]. We will
prove a unified version of the alternation theorem for the Chebyshev and the residual
problem for rational functions. This will then allow us to prove so-called Szegő-Widom
asymptotics for the extremal functions.

It will be convenient to use the notion of divisors on the Riemann sphere C. Divisors
on C are elements of the free Abelian group over C. They can be realized as functions
D : C → Z or as formal sums. Namely, if D ∈ ZC then alternatively it is common to
identify D with the formal sum

∑

z∈C

nzz, where nz = D(z).

Note that nz ̸= 0 only for finitely many z ∈ C. We will mainly use the functional
realization. The degree of D is the integer degD = ∑

z D(z), and the divisor D is
integral if D(z) ≥ 0 for all z. We also write D1 ≤ D2, if D2 − D1 is integral and
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denote by suppD = {z ∈ C : D(z) ̸= 0} the support of D. In particular, for a
meromorphic nonconstant function f : C → C, we denote its polar divisor by (f)∞; the
polar divisor assigns to each pole the multiplicity of that pole, and takes zero values
elsewhere. Similarly, for w ∈ C, we define (f)w = (1/(f − w))∞. The value deg(f)w is
independent of w and corresponds to the degree of f . We also follow the convention to
set (f)w = 0, if f is a constant. For a given sequence C, we define the special divisor:

D∞
n (c) = #{k : ck = c, 1 ≤ k ≤ n}. (1.55)

By definition, we have degD∞
n = n. Any integral divisor, D, of degree n generates an

n+ 1 dimensional vector space by

L(D) = {f : C → C | f is meromorphic and (f)∞ ≤ D},

The space Ln from (1.1) can now equivalently be introduced by

Ln = L(D∞
n ).

This allows us to present (1.53) and (1.54) in a unified way:

Problem 5. For a real integral divisor D∞
n with degD∞

n = n containing only points
in R \ E, and a point x∗ ∈ R \ E, denote dn = D∞

n (x∗) and Ln = L(D∞
n ) and find

mn(x∗) := sup{Re lim
x→x∗

Fn(x)
r(x, x∗)dn

| Fn ∈ Ln, ∥Fn∥E ≤ 1}. (1.56)

The Chebyshev problem corresponds to dn > 0 and the residual problem corre-
sponds to dn = 0. Throughout this section, we work in the general setting of Problem 5.
For fixed n, we will call the gap containing x∗ the extremal gap (for n).

The Chebyshev alternation theorem compresses in a very elegant way several crucial
properties of Chebyshev polynomials associated to subsets of R. Let E ⊂ R be com-
pact. The Chebyshev alternation theorem states that the Chebyshev polynomial, Tn,
of degree n is uniquely characterized by the property, that there are x1 < · · · < xn+1,
xi ∈ E, such that

Tn(xj) = (−1)n+1−j .

This characterization can be understood in the following way: Tn has n simple real
zeros all belonging to [min E,max E]. Between consecutive zeros, there is at least one
point belonging to E on which |Tn| attains the sup-norm of Tn, leading to n− 1 points
of alternation. In addition, there is one at each gap edge of the extremal gap (in this
case the one containing ∞) which sums up to n+ 1 points of alternation. In particular
x1 and xn+1 will always be counted, because of the natural order of R. To account for
that in the general setting, we use the following notation:

Definition 1.28. For a sequence (tj)m
j=0 in R with m ≥ 2, we say that the sequence

is cyclically ordered if it has no repetitions and there exists f ∈ PSL(2,R) such that
f(t0) = ∞ and f(t1) < f(t2) < · · · < f(tm). We will also use cyclic interval notation:
for distinct a, b ∈ R, we denote

(a, b) = {c | (a, c, b) is cyclically ordered}, [a, b] = {a, b} ∪ (a, b).

This gives a well-defined cyclic order, since PSL(2,R) transformations preserve ori-
entation on R.

In the setting of rational functions the counting for the alternation theorem is
essentially more delicate, and the relative ordering of the poles and alternation points
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play an important role. The reason for this is that if between two zeros there is a gap
with a pole cj , then the sign at the next gap edge depends on the parity of the pole.
This makes it necessary to define the following sign function:

Sn(x) =
∑

1≤k≤n
ck ̸=x∗

χ[x∗,ck)(x) =
∑

c∈R\{x∗}
D∞

n (c)χ[x∗,c)(x).

Recall that a function F is called real if for all z ∈ C, F (z) = F (z).

Definition 1.29. For a real function F ∈ Ln with ∥F∥E ≤ 1, a set of distinct points
x1, . . . , xm ∈ E such that the sequence (x∗, x1, . . . , xm) is cyclically ordered and satisfies
the following alternation property

F (xj) = (−1)m−j−Sn(xj) (1.57)

for all j = 1, . . . ,m is called an alternation set. We say that F has a maximal alternation
set if m = n+ 1.

It should be noted that the notion of alternation set depends on the function F , the
class Ln, the set E, and the reference point x∗. We note that in what follows, whenever
we refer to extremal functions, we mean this in the sense of Problem 5.

Theorem 1.30 (Alternation theorem). A real function F ∈ Ln with ∥F∥E ≤ 1 is an
extremal function if and only if it has a maximal alternation set.

These results generalize standard results from the polynomial case: in the Cheby-
shev polynomial case, Sn(x) ≡ 0, and in the residual polynomial case, Sn has one jump
which may or may not affect the alternation criterion, depending on degree. The case
of Chebyshev rational functions was also previously formulated in [31]. In all the real
extremal problems, previously considered in the literature, the extremizer is seen to
be nonconstant. However, in the setting of residual rational functions, the extremizer
can be a constant function, and the alternation theorem lets us characterize when this
happens:

Theorem 1.31. The extremal function Fn is constant if and only if the divisor D∞
n

is of the form (1.55) for points c1, . . . , cn such that the points x∗, c1, c2, . . . , cn are in
n+ 1 distinct gaps of E.

In particular, for the Chebyshev problem, x∗ = cn so Fn is always nonconstant.
Theorem 1.31 can be understood in the following way. Let’s write again

Fn = P

Rn
,

where Rn is defined by (1.2). As for orthogonal rational functions, P has at most one
simple zero in each gap of E and no zero in the extremal gap. In particular, P can have
a zero at ck, which is then called a “generalized zero”. Theorem 1.31 describes the case
that P has n generalized zeros3. This is made again precise in the language of divisors.
We call a point x a “generalized zero” of Fn if either (Fn)0(x) > 0 or if

D∞
n (x) − (Fn)∞(x) > 0.

3Where deg P = n − 1 is viewed as a generalized zero at ∞



24 1.1. Extremal rational functions

Thus, this notion includes both actual zeros of Fn and places where there is a reduction
in the order of the pole compared to the maximal allowed order. These generalized zeros
are precisely counted by the divisor

D0
n := (Fn)0 +D∞

n − (Fn)∞.

We turn to root asymptotics of Fn. From deg(Fn)0 = deg(Fn)∞ it follows that

degD0
n = degD∞

n = n

so we can define the normalized pole counting measure

µn := 1
n

∑

c
D∞

n (c)δc

and normalized generalized zero counting measure

νn := 1
n

∑

c
D0

n(c)δc.

The behavior of log|Fn| is governed by the zero and pole distributions. This corresponds
to two Riesz representations, with log|Fn| superharmonic (respectively, subharmonic)
away from the set of zeros (respectively, poles). The limiting pole distribution µ directly
determines the root asymptotics of the functions Fn and the limiting zero distribution.

We assume that E is not a polar set and denote by GE(z, w) the Green function and
by ωE(dx, z) harmonic measure for this domain.

Theorem 1.32 (Root asymptotics). Assume that E is not a polar set, ⋃n≥1 suppD∞
n ∩

E = ∅, limµn = µ in the w∗-topology of C(R)∗ and (x∗
n)∞

n=0 be a sequence in R \ E not
accumulating on E. Then uniformly on compact subsets of C \ R,

lim
n→∞

1
n

log|Fn(z)| =
∫
GE(z, x)dµ(x). (1.58)

Moreover,
lim νn =

∫
ωE(dz, x)dµ(x).

in the w*-topology of C(R)∗.

For the special case of a periodic sequence c1, · · · , cp, we have µ = 1
p

∑p
j=1 δcj and

(1.58) resembles (1.49).
Recall that in the setting of orthogonal rational functions we proved in Theorem

1.19 a universal lower bound for the extremal functions and Stahl–Totik regularity
is equivalent to existence of the same upper bound leading to root asymptotics of the
extremal functions. As Theorem 1.32 shows, the situation is different in the L∞-setting.
We will again show a universal lower bound. However, due to explicit representations
of Fn in terms of the so-called n-extension En = F−1

n ([−1, 1]), we obtain a Bernstein-
Walsh type upper bound for Fn in terms of the Green functions GE(z, c). Combining
this with the lower bound proves root asymptotics for Fn.

We also prove so-called Szegő–Widom asymptotics for Fn. For the sake of this
introduction, we only describe heuristically what this type of notion means and refer
to the original article for the precise results. If Ω = C \ E is simply connected, let
BE(·, c) denote the Riemann map, which maps Ω conformally onto D normalized so
that BE(c, c) = 0 and ∂zBE(z, c)|z=c > 0. It can be seen that

BE(z, c) = e−GE(z,c)−iG̃E(z,c), (1.59)
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where G̃E(z, c) denotes the harmonic conjugate of GE(z, c).
Considering

Fn

(∏

c
D∞

n (c)BE(z, c)
)
, (1.60)

yields an analytic, in fact normal family and one can describe convergent subsequence
in the topology of local uniform convergence in Ω. If Ω is not simply connected, BE(z, c)
can still be defined locally by (1.59) and then using the monodromy theorem extended
to a global multivalued analytic function in Ω. The corresponding subsequential limits
of (1.60) are then described in terms of extremal solutions of a corresponding H∞(Ω)
problem of so-called character automorphic functions. This notion goes back to the
seminal paper of Widom [51] and is thus referred to Szegő-Widom asymptotics. In
[20] we prove Szegő–Widom asymptotics for Fn associated for domains Ω = C \ E
which are regular Parreau–Widom domains, so that the Direct Cauchy theorem holds
in Ω. These domains are defined in [20, Section 4], but let us mention here that it also
includes infinitely connected domains. This generalizes the results of [7] to Chebyshev
and residual rational functions.

1.1.5 Finite-Gap CMV Matrices: Periodic Coordinates and a Magic
Formula

It was mentioned in Section 1.1.1 that GMP matrices provide periodic coordinates for
generically almost periodic Jacobi matrices associated to finite-gap sets. This was then
used for instance in the proof of Theorem 1.27 to extend results from the spectral set
[−1, 1] to spectral sets which are arbitrary finite-gap sets. The unitary analog of Jacobi
matrices are called CMV matrices. Again, the isospectral torus of CMV matrices
associated to a finite union of arcs of the unit circle generically consists of almost
periodic operators. We will again use the terminology finite-gap sets. The goal of this
section is to find periodic coordinates and prove a magic formula for CMV matrices
belonging to the isospectral torus of finite-gap sets.

We start with the motivation for and definition of CMV matrices. Let µ be a
non-trivial probability measure supported on ∂D = {z ∈ C | |z| = 1} and ϕn the
associated orthonormal polynomials. If Mz denotes the multiplication operator in
L2(µ), then M∗

z = M1/z. We still have that ⟨Mzϕj , ϕk⟩ = 0, if k > j + 1, but for
k ≤ j + 1, the corresponding entries may be different from zero. In particular, the
corresponding matrix representation is not of finite band structure. To overcome this,
Cantero, Moral and Velázquez (CMV) [5] suggested to instead orthogonalize the se-
quence (1, z−1, z, z−2, z2, · · · ). The multiplication operator in this basis is a five diag-
onal matrix of a special structure that will be defined below and the corresponding
operators on ℓ2(N0) are called CMV-matrices; cf [38, Chapter 4]. In the language of
divisors, this means to consider the orthogonal rational functions associated to periodic
repetition of C2 = (0,∞). Denoting the reflection with respect to the unit circle by
ẑ = 1/z, z ∈ C, then C2 = (z0, ẑ0), with z0 = 0. This perspective will be important
in the following. We recall the structure of a half-line CMV matrices. Fix a sequence
(ak)∞

k=0 ∈ DN0 , set ρk =
√

1 − a2
k and define
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C+ =




a0 a1ρ0 ρ1ρ0 0
ρ0 −a1a0 −ρ1a0 0
0 a2ρ1 −a2a1 a3ρ2 ρ3ρ2 0
0 ρ2ρ1 −ρ2a1 −a3a2 −ρ3a2 0

0 0 a4ρ3 −a4a3
. . . . . . . . . . . .




The structure in the first two rows is slightly different due to an “initial condition”.
Starting from the third row, the structure repeats two-periodically and can thus be used
to also define full-line CMV matrices acting on ℓ2(Z). Thus, the matrix representation
of a full-line CMV matrix is of the form

C =




. . . . . . . . .
ρ2l−1a2l −a2la2l−1 a2l+1ρ2l ρ2lρ2l+1
ρ2lρ2l−1 −ρ2la2l−1 −a2l+1a2l −ρ2l+1a2l

ρ2l+1a2l+2 −a2l+2a2l+1 a2l+3ρ2l+2 ρ2l+2ρ2l+3
ρ2l+2ρ2l+1 −ρ2l+2a2l+1 −a2l+3a2l+2 −ρ2l+3a2l+2

. . . . . . . . .




.

We say a CMV matrix is (almost) periodic, if this property holds for the generating
sequence (ak)k∈I , where I = N0 or I = Z. Let E ⊂ ∂D be a finite union of circular arcs.
The isospectral torus of CMV matrices it defined by

T CMV
E = {C | C is an almost periodic full-line CMV matrix, σ(C) = σac(C) = E}.

For a definition comparable to (1.35) see [6, eq. (1.34)]. As for Jacobi matrices, it is
a property of the set E, whether T CMV

E consists of periodic or merely almost periodic
CMV matrices. One goal of this section is to find a class of operators that allows to
give a parametrization of T CMV

E by periodic operators.
Recall that CMV matrices arise as the matrix representation for the multiplication

operator in L2(µ) with respect to orthogonal rational functions for periodic repetitions
of poles C2 = (z0, ẑ0), with z0 = 0. The following generalizations seems natural. Fix a
non-trivial probability measure on ∂D and (zj)∞

j=1 ∈ D, with |zj | ≤ K < 1. Velázquez
showed that the structure of the multiplication operator Mz,µ in L2(µ) with respect
to the orthogonal rational functions for the sequence of poles C = (z1, ẑ1, z2, ẑ2, . . . ) is
related to CMV matrices via an operator Möbius transform; specifically, denoting by
D+ := diagN0(0, z1, z1, z2, z2, . . .), he showed that Mz,µ is unitarily equivalent to

b−D+(C+) := ηD+(1 + C+D
∗
+)−1(D+ + C+)η−1

D+
, ηD+ =

√
1 −D+D∗

+ (1.61)

for some half-line CMV matrix C+; cf. [50, Theorem 5.1]. This theorem suggests
we should study this new class of operator Möbius transforms of CMV matrices more
closely. However, as for GMP matrices, periodic occurrences of z0 = 0 will be important
for a finite band structure and thus we will restrict our attention to periodic sequences
of poles:

Definition 1.33 (MCMV matrices). Fix n ≥ 1, let (zk)n−1
k=0 ∈ Dn with z0 = 0, C2n =

(z0, ẑ0, z1, ẑ1, . . . , ẑn−1), (ak)k∈Z ∈ DZ, and ϑ ∈ R/2πZ. Denote by D0 the 2n-periodic
diagonal matrix

D0 := D0(⃗z) = diagZ(. . . , zn−2, zn−1, zn−1, z0 | z0, z1, z1, z2, . . .), (1.62)
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let Λk(ϑ) be the 2n × 2n diagonal matrix Λk(ϑ) := diag2n(eikϑ, e−ikϑ, . . . , eikϑ, e−ikϑ),
and define

Λ(ϑ) :=
⊕

k∈Z
Λk(ϑ),

where Λk(ϑ) acts on span{ek, ek+1} in ℓ2(Z). With this notation, the (whole-line)
MCMV matrix for z⃗, (ak), and ϑ is defined by

A := A((ak), ϑ; C2n) = Λ(ϑ)∗b−D0(C)Λ(ϑ), (1.63)

where C = C((ak)) is the CMV matrix associated to (ak)k∈Z.

The vertical bar in (1.62) denotes the splitting of ℓ2(Z) = ℓ− ⊕ ℓ2+. The operator
Möbius transformation C 7→ b−D0(C), defined on operators acting on ℓ2(Z) is defined
exactly as in (1.61) with D0 replaced by D+. For finite vectors (zk)n−1

k=0 we will hence-
forth always assume that z0 = 0. Finally, the meaning of the conjugation by Λ(ϑ) will
be clarified below; in short, this diagonal matrix enables us to change from periodicity
up to a rotational phase to pure periodicity.

Like CMV matrices, an MCMV matrix A is again band-structured. If we split A
into 2n×2n blocks Aij, then Aij = 0 if |i−j| > 1. Moreover, the off-diagonal blocks are
of the form Ai,i−1 = viδ⊺2n−1 and Ai,i+1 = uiδ⊺0 for some explicit vectors ui,vi ∈ C2n,
i.e., A is of the form

A =

.. . . . . . . .

0 0 vi Aii ui 0 0

. . . . . . . . .






.

Furthermore, since operator Möbius transforms preserve unitarity, MCMV matrices
are likewise unitary operators. Thus MCMV matrices can be viewed as being “block-
CMV”. This special structure does not hold for arbitrary operator Möbius transforms of
CMV matrices; it follows in our case from D0 having periodically repeated zero entries.

As in Section 1.1.1 we start with discussing the spectrum of periodic MCMV ma-
trices. For a fixed collection of poles C2n as in Definition 1.33, we define the collection
of all MCMV matrices by

A(C2n) :=
{
A((ak)), ϑ; C2n) | (ak) ∈ DZ, ϑ ∈ R/2πZ

}
(1.64)

and give special consideration to the subset Aper(C2n) ⊂ A(C2n) of periodic operators,
i.e.

Aper(C2n) :=
{
A ∈ A(C2n) | S2nA = AS2n}, (1.65)

where, as before, S is the right shift operator.
The spectrum of a periodic MCMV matrix is described by the trace of the corre-

sponding monodromy matrix. Given w ∈ D we define the Blaschke factor

bw(z) = z − w

1 − wz
(1.66)

and for a ∈ D the SU(1, 1) matrix

U(a) := 1
ρ

(
1 a
a 1

)
, ρ =

√
1 − |a|2.
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For a fixed A = A((ak)), ϑ; C2n) ∈ Aper(C2n), define the monodromy matrix TA by

TA(z) := U(a0)
(
bz1(z) 0

0 1

)
U(a1)

(
bz1(z) 0

0 1

)
U(a2)

(
bz2(z) 0

0 1

)
· · ·

· · · U(a2n−3)
(
bzn−1(z) 0

0 1

)
U(a2n−2)

(
bz0(z) 0

0 1

)
U(a2n−1)

(
bz0(z) 0

0 1

)(
e−iϑ 0

0 eiϑ

)
.

(1.67)

Letting B(z) = z
∏n−1

j=1 bzj (z), we introduce the following:

Definition 1.34 (Discriminant of an MCMV matrix). Let A = A((ak), ϑ; C2n) ∈
Aper(C2n) be a periodic MCMV matrix. The discriminant of A is the rational function
defined by

∆A(z) := 1
B(z) tr

(
TA(z)

)
.

In [6, Lemma 4.2] we show that

(i) ∆A is real, i.e., ∆A(ẑ) = ∆A(z),

(ii) zeros of ∆A lie on ∂D and are simple,

(iii) for all critical points c ∈ ∂D we have |∆A(c)| ≥ 2,

(iv) σ(A) = ∆−1
A ([−2, 2]).

Resembling the crucial properties of the polynomial discriminant. In particular, this
implies that σ(A) is a finite-gap set.

Let E ⊂ ∂D be a finite-gap set, C2n = (z0, ẑ0, z1, ẑ1, . . . , zn−1, ẑn−1), λ∗ ∈ ∂D \ E
and consider as in (1.41)

TE(C2n, λ∗) = {A ∈ Aper(C2n) | σ(A) = E,∆A(λ∗) > 0}.

The extra condition ∆A(λ∗) > 0 may seem surprising at the first sight compared to
(1.28) or (1.41). This is explained, since in both cases the discriminant is normalized
at ∞; specifically the polynomial discriminant has positive leading coefficient and thus
a fixed behavior at ∞. Likewise the discriminant of periodic GMP matrices always has
behavior λg+1z for z → ∞ with λg+1 > 0. In the case of orthogonal rational functions
associated to subsets of ∂D there is no special gap which could be used as a natural
normalization. This explains the appearance of this extra condition.

The discriminant can be used to check whether a periodic MCMV matrix is an
element of TE(C2n, λ∗) or not, providing an algebraic description of the isospectral
torus:

Theorem 1.35. Fix C2n, A0 ∈ Aper(C2n), λ∗ ∈ ∂D \ σ(A0) with ∆A0(λ∗) > 0. Then

Tσ(A0)(C2n, λ∗) = {A ∈ Aper(C2n) : ∆A = ∆A0}. (1.68)

In the above theorem, we assumed a priori that E = σ(A0) is the spectrum of a
periodic MCMV matrix. However, for an arbitrary finite-gap set E and an arbitrary
choice of poles C2n, TE(C2n, λ∗) may be empty. This can be seen for example by the fact
that not every finite-gap set is the spectrum of a periodic CMV matrix. However, we
will show, that for a certain choice CE it is always non-empty, in fact it is in bijective
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correspondence with a g + 1 dimensional torus, where g + 1 is the number of gaps,
respectively bands of E. This will be achieved by studying the Ahlfors function for the
points 0 and ∞, respectively.

Consider a finite-gap set E having g + 1 gaps. Recall that for any point z0 in the
domain C \ E, there exists an Ahlfors function wz0 which maximizes the modulus of
the derivative at z0 (or, in the case z0 = ∞, maximizes limz→∞ |zw∞(z)|) among all
analytic functions on C\E with modulus bounded by 1. This extremal property defines
wz0 uniquely up to a unimodular multiplier and, moreover, wz0(z0) = 0. In the right
normalization, these Ahlfors functions for E ⊂ ∂D have the symmetry property

wẑ0(ẑ) = wz0(z); (1.69)

in particular, the zeros of w∞ can be obtained by reflecting the zeros of w0 with respect
to ∂D. In terms of these functions, we can define a special function, which we call the
generalized discriminant, related to the set E:

Definition 1.36 (Generalized discriminant). For a finite union of non-degenerate
closed circular arcs E ⊂ ∂D, the generalized discriminant is defined by

∆E := 1
w0w∞

+ w0w∞.

By (1.69), we see that ∆E is real-valued on ∂D; since |wz0(z)| = 1 for z ∈ E in the
sense of nontangential limits and |wz0(z)| < 1 for z ∈ C \ E, it follows that

E = ∆−1
E ([−2, 2]).

The function ∆E has 2(g + 1) poles, half of which lie inside the unit disk. Moreover,
there is exactly one critical point (i.e., a zero of ∆′

E) in each band of E and in each gap
of E. While ∆E maps all critical points in bands to −2, the critical points in gaps have
∆E-value strictly greater than 2. As will be crucial for our analysis, we define CE to
be some fixed ordering of the poles of ∆E inside D, i.e.

CE := (z0 = 0, ẑ0, z1, ẑ1, . . . , ẑg) ∈ Dg+1, zk ∈ D a pole of ∆E. (1.70)

The following theorem shows that for the particular choice CE, TE(CE, λ∗) is in bi-
jective correspondence to the isospectral torus of almost periodic CMV matrices T CMV

E :

Theorem 1.37 (Periodic coordinates for finite-gap CMV matrices). Let E ⊂ ∂D be a
disjoint union of g + 1 non-degenerate closed circular arcs, and let λ∗ ∈ ∂D \ E. For
CE as in (1.70) depending only on E, there is a unitary bijection between T CMV

E and
TE(CE, λ∗); i.e.

T CMV
E ≃ TE(CE, λ∗).

In particular, for an almost-periodic CMV matrix C with absolutely continuous spectrum
E, there exists an associated CMV matrix C = C((ak)) with phase-periodic coefficients

ak+2(g+1) = e−2iϑak, k ∈ Z (1.71)

such that C is unitarily equivalent to the periodic MCMV matrix A((ak), ϑ; CE) ∈
Aper(CE). Moreover, the spectral measures of the half-line restrictions C+ and A+
and the cyclic vector e0 coincide.
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Remark 1.38. (i) As a consequence of (1.71), the operator b−D0(C) is periodic up to a
phase. By conjugating it with Λ(ϑ) – and this is the main purpose of introducing
such a diagonal matrix – we get that A((ak), ϑ; CE) becomes periodic in the
standard sense. This is particularly important in view of Theorem 1.39 below,
since by Naiman’s lemma [36] an operator satisfying the right-hand side of (1.72)
is necessarily periodic.

(ii) Notice that (1.71) is invariant under the substitution ϑ 7→ ϑ + π. Consequently,
there are in fact two MCMV matrices, A((ak), ϑ; CE) and A((ak), ϑ + π; CE), in
Aper(CE) with spectrum E having unitary equivalent half-line restrictions to C+.
However, notice that this same map sends eiϑ to −eiϑ, which, by (1.67), changes
the sign of the discriminant ∆A 7→ −∆A. For this reason, the normalization
∆A(λ∗) > 0 fixes uniquely one such MCMV matrix.

Using the generalized discriminant, we can characterize TE(CE, λ∗) by a magic for-
mula such as in Theorem 1.10.
Theorem 1.39 (Magic Formula for MCMV matrices). Let E ⊂ ∂D be a disjoint union
of g+1 non-degenerate closed circular arcs, let λ∗ ∈ ∂D\ E, and let CE be as in (1.70).
Then, for any A ∈ A(CE),

A ∈ TE(CE, λ∗) ⇐⇒ ∆E(A) = S2(g+1) + S−2(g+1), (1.72)

and in this case ∆A = ∆E.
In this section, we have concentrated mainly on the operator theoretic perspective.

As CMV matrices have close connections to Schur and Caratheodory functions, these
results can also be interpreted in a function theoretic approach. At this place we will
only review this connection, explain the consequences informally and refer to [6, Section
1.2] for the precise statements.

A Schur function is an analytic function f : D → D. Provided that f is not a finite
Blaschke product, i.e. a finite product of Blaschke factors (1.66), the Schur algorithm

f0(z) = f(z),

zfk+1(z) = fk(z) − ak

1 − akfk(z) , ak = fk(0)

determines an infinite sequence of parameters (ak) ∈ DN0 , also known as Schur parame-
ters; conversely, any sequence (ak) ∈ DN0 determines a function f ∈ S by an associated
continued fraction expansion (see, e.g., [38]).

A Caratheodory function is an analytic function on D, with ReF ≥ 0 on D and
F (0) = 1. The association

F (z) = 1 + zf(z)
1 − zf(z) , f(z) = 1

z

F (z) − 1
F (z) + 1 ,

sets up a one-to-one correspondence between Schur and Caratheodory functions. Every
Caratheodory function admits an integral representation. That is, there exists a unique
probability measure µ on ∂D, such that

F (z) =
∫
ζ + z

ζ − z
dµ(ζ).

Let C+ = C+((ak)) be a CMV matrix generated by the coefficients (ak)k∈N0 . Then e0
forms a cyclic vector for C+ and the spectral measure of C+ and the vector e0 is the
measure in the integral representation of the Caratheodory function

F (z) =
〈
(C+ − z)−1(C+ + z)δ0, δ0

〉
.
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If f is the Schur function associated to F , then by Geronimus’ theorem [38, Chapter
3] (ak)k∈N0 are exactly the Schur parameters of f .

The context of Theorem 1.37 is that the almost periodic CMV matrix C+ and the
periodic MCMV matrix A+ are associated to the same Caratheodory function F and
Schur function f . The Schur algorithm always uses zero as interpolation point. As
an immediate corollary from the direct spectral theory of periodic MCMV matrices
developed in [6, Section 4] one obtains that if one uses the zeros of the Ahlfors function
as interpolation points, then f solves a periodic interpolation problem, see [6, Theorem
1.6]. Moreover, F is a solution of a quadratic equation of the form (1.14) where the
coefficients are given in terms of the monodromy matrix of A+, see [6, Corollary 1.7].
This resolved a conjecture of Simon [39, Conjecture 11.9.6]
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1.2 Eigenvalue asymptotic for continuum Schrödinger op-
erators

In this section, we describe several results about the local and global asymptotic behav-
ior of eigenvalues of truncations of continuum Schrödinger operators to finite intervals
as the length of the interval tends to ∞. Let V ∈ L1

loc([0,∞)) be real valued and
consider the associated Schrödinger operator, corresponding formally to

HV = −∂2
x + V. (1.73)

We will in addition assume that V is such that the operator is limit point at +∞.
Thus, placing a Dirichlet condition at 0 yields a self-adjoint realization of HV . That is,
we will consider the domain of the operator

D(HV ) = {f ∈ L2((0,∞)) | f, f ′ ∈ ACloc([0,∞)),−f ′′ + V f ∈ L2((0,∞)), f(0) = 0},
(1.74)

where ACloc([0,∞)) denotes the set of functions that are absolutely continuous on
bounded intervals. Let HL

V denote the truncation of HV to a finite interval [0, L] with
domain

D(HL
V ) = {f ∈ L2((0, L)) | f, f ′ ∈ AC([0, L]),−f ′′+V f ∈ L2((0, L)), f(0) = f(L) = 0}.

As will be explained below, HL
V has only discrete spectrum corresponding to the zeros

of fundamental solutions. For any z ∈ C the Dirichlet solution, u(x, z), is the solution
of the initial value problem

−∂2
xu(x, z) + V (x)u(x, z) = zu(x, z), u(0, z) = 0, ∂xu(0, z) = 1. (1.75)

Clearly ξ is an eigenvalue of HL
V if and only if u(L, ξ) = 0. For fixed L, u(L, ·) is an

entire function that has infinitely many zeros, which are necessarily real and accumulate
only at +∞. The zeros of u(L, ·) will be denoted by ξL

j , j ∈ N. In this section, we will
be concerned with asymptotic properties of ξL

j as L → ∞. First we will study their
global behavior, that is we will study limits of the zero counting measure

ρL = 1
L

∞∑

j=0
δξL

j
. (1.76)

In contrast to the normalized zero counting measure for orthogonal polynomials (1.42),
this is not a finite measure. In Section 1.2.1, we introduce the notion of Stahl–Totik
regularity for continuum Schrödinger operators and show that it implies that ρL has a
unique limit that can be characterized in terms of the spectrum of the half-line operator
HV . Section 1.2.2 and 1.2.3 will then be concerned with the local asymptotic behavior
of ξL

j around a point ξ0 ∈ R. In particular, we will be interested in the case when
consecutive zeros around ξ0 are asymptotically equally spaced.

1.2.1 Stahl–Totik regularity for continuum Schrödinger operators

In this section, we study Schrödinger operators as in (1.73) with domain (1.74), with
focus on studying limits of the zero counting measure (1.76). Throughout this section,
we will assume that V is uniformly locally integrable, i.e.,

sup
x≥0

∫ x+1

x
|V (t)|dt < ∞. (1.77)
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In particular, this implies that HV is limit point at ∞.
As discussed in Section 1.1.2, Stahl–Totik regularity was initially studied in the

setting of orthogonal polynomials with compactly supported measures of orthogonality
and is formulated in terms of the potential theoretic Green function with pole at infin-
ity, the logarithmic capacity and the equilibrium measure. All these notions cease to
exist, when ∞ becomes a boundary point of the domain. In the setting of continuum
Schrödinger operators, the boundary of the domain will be the closure of E = σess(HV )
with respect to the Riemann sphere C and thus, since HV is unbounded, will contain
∞ as a boundary point. Let us mention that this is different from the setting of Section
1.1.3. Although for orthogonal rational functions we also allow unbounded sets E, but
the set of poles are chosen from R \ E and are thus still interior points of the domain.
In this section, we consider unbounded sets and still use the boundary point ∞ as
“interpolation point”.

Martin functions will serve as the counterpart of Green functions in the spectral
theory of unbounded operators. Martin functions first appeared in [34], for a book
treatment we refer to [2]. For Denjoy domains, i.e. E ⊂ R, the Martin function
related to ∞ can be defined as a positive harmonic function on Ω which is bounded
on each bounded subset of Ω and which vanishes q.e. on E. If E is semibounded,
the cone of such functions is one-dimensional. Hence, one additional normalization is
required, which will be specified later. Interestingly, whereas the Green function always
has a log |z| behavior at its pole, the behavior of the Martin function can be more
varied. We will show that the Martin function with pole at ∞ associated to resolvent
domains of Schrödinger operators obeying (1.77) have maximal possible growth. Let E
be semibounded and M be a Martin function. The Akhiezer–Levin condition in this
setting is

lim
z→−∞

M(z)√−z > 0 (1.78)

(by general principles, the limit exists with a value in [0,∞)). This condition was ini-
tially proposed by Akhiezer and Levin without a square root for subsets of R that are
unbounded in both directions. In this setting, the condition can be understood as fol-
lows: if the set is sufficiently dense at ∞ such that, in potential-theoretical sense, locally
at ∞ divides C into two half planes, then there exist two linearly independent Martin
functions, or only one in the case of sparser sets. We refer to [23] for a comprehensive
discussion on Martin functions in Denjoy domains.

For Akhiezer–Levin sets, we will normalize the Martin function so that the limit in
(1.78) is equal to 1 and denote it by ME. The following theorem shows that spectra
of continuum Schrödinger operators satisfying (1.77) are always Akhiezer-Levin sets.
Moreover, the higher asymptotic expansion that we obtained for ME is crucial to define
a notion of capacity in this setting.

Theorem 1.40. For any potential V obeying (1.77) and E = σess(HV ), the domain
Ω = C\E is Greenian, ∞ is a Dirichlet-regular point for Ω, Ω obeys the Akhiezer–Levin
condition, and there exists aE ∈ R such that the Martin function has the asymptotic
behavior

ME(z) = Re
(√

−z + aE
2
√−z

)
+ o

(
1√
|z|

)
, (1.79)

as z → ∞, arg z ∈ [δ, 2π − δ], for any δ > 0.

Each conclusion is strictly stronger than the other. Specifically, the presence of the
second term in expansion (1.79) is not inherent to Akhiezer-Levin sets, but rather a
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characteristic associated with spectra of Schrödinger operators. It’s crucial to note that
spectra of Schrödinger operators with bounded potentials can exhibit extreme thinness,
potentially possessing zero Hausdorff dimension [12] and zero lower box counting di-
mension [11]. In contrast, our result can be understood as a universal “thickness” result
in the perspective of Martin functions.

The constant aE serves as a substitute for the Robin constant and enters the fol-
lowing universal inequality:

Theorem 1.41. If V is a potential obeying (1.77) and E = σess(HV ), then

aE ≤ lim inf
x→∞

1
x

∫ x

0
V (t)dt. (1.80)

The inequality (1.80) is proved by comparing asymptotic expansions of ME and of
the Dirichlet solution u(x, z) as defined in (1.75) for z → ∞. In fact, the inequality
(1.80) holds not just asymptotically but pointwise, leading to an universal lower bound
on the growth rate of eigensolutions:

Theorem 1.42. If V is a potential obeying (1.77) and E = σess(HV ), then

ME(z) ≤ lim inf
x→∞

1
x

log|u(x, z)|, ∀z ∈ C \ [min E,∞). (1.81)

It is necessary to exclude [min E,∞) since for z ∈ (min E,∞), by Sturm oscillation
theory [40], u(·, z) can have infinitely many zeros.

Stahl–Totik regularity is characterized through equality in (1.80).

Definition 1.43. The potential V is regular if

aE = lim
x→∞

1
x

∫ x

0
V (t)dt. (1.82)

We have already observed in the context of the inequalities (1.80) and (1.81), that
an inequality of constants can actually be lifted to an inequality of functions. The same
holds in the case of equality, leading to root asymptotics of Dirichlet solutions:

Theorem 1.44. If V is a potential obeying (1.77) and E = σess(HV ), the following are
equivalent:

(i) V is regular,

(ii) For q.e. z ∈ E, lim supx→∞
1
x log|u(x, z)| ≤ 0,

(iii) For all z ∈ C, lim supx→∞
1
x log|u(x, z)| ≤ ME(z),

(iv) limx→∞ 1
x log|u(x, z)| = ME(z) uniformly on compact subsets of C \ [min E,∞).

Simon conjectured in [43] that a theory of Stahl–Totik regularity should exist also
for continuum Schrödinger operators, that is similar to the one for Jacobi matrices
presented in Section 1.1.2. Theorem 1.44 proves a theory of Stahl–Totik regularity in
much higher generality as previously conjectured in [43]. See the introduction of [17]
for more details on the subject.

Let us return to the initial question of describing limits of the zero counting measure
ρL. We will first define a candidate for the limit measure. The Martin function can
be extended to a subharmonic function to all of C and as such has a Riesz measure
defined by

ρE = 1
π

∆ME. (1.83)
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We call ρE the Martin measure for E. Let ρL denote the zero counting measure as
defined in (1.76). Note that ρL is the Riesz measure of 1

L log |u(L, ·)|. Stahl–Totik
regularity implies convergence of ρL to ρE:

Theorem 1.45. Assume that V is regular. Then ρL → ρE as L → ∞ in the w∗-topology
of Cc(R)∗.

To formulate a converse of this theorem, let us recall the construction of a maximal
spectral measure in terms of the Weyl m-function. Since HV is limit point at ∞, for
z ∈ C \ R, there exists (up to a scalar multiple unique) ψ(x, z) satisfying

−∂2
xψ(x, z) + V (x)ψ(x, z) = zψ(x, z)

and ψ(·, z) ∈ L2((0,∞)), which is called the Weyl solution at ∞. Again for z ∈ C \ R,
the Weyl m-function is defined by

m(z) = ∂xψ(0, z)
ψ(0, z) . (1.84)

The function m is a Herglotz functions and the measure µ in the integral representation
(1.6) represents a maximal spectral measure for HV . If µ is not supported on a polar
set, then also the converse of Theorem 1.45 holds:

Theorem 1.46. Assume that V obeys (1.77) and let µ be a maximal spectral measure
for HV . Suppose that ρL converges to ρE as L → ∞ in the w∗-topology of Cc(R)∗.
Then, either V is regular, or there exists a polar Borel set X such that µ(R \X) = 0.

We conclude with a sufficient condition for Stahl–Totik regularity in terms of the
spectral measure.

Theorem 1.47. Assume that V obeys (1.77), let E = σess(HV ) and assume that E
is a regular Parreau-Widom set. Denote by dµ = fµdξ + dµs the Radon–Nikodym
decomposition of µ with respect to Lebesgue measure. If fµ(ξ) > 0 for Lebesgue-a.e.
ξ ∈ E, then V is regular.

We have presented the results in a deterministic setting. For ergodic families of
Schrödinger operators, the considered quantities can be recognized as ergodic notions
such as Lyapunov exponent or density of states measure. The above mentioned re-
sults have particularly relevant applications in the ergodic setting. For the precise
statements, we refer to the introduction of [17].

1.2.2 Bulk universality limits

As seen in the previous section, Stahl–Totik regularity is intimately related to conver-
gence of the zero counting measure and thus to the global asymptotics of the eigenvalues
of HL

V . In contrast to this, this section will be concerned with the local behavior of the
eigenvalues at some point ξ0 ∈ R.

The results presented in this section are from the paper [18]4, which find most
applications for orthogonal polynomials. However, due to their general formulation in
terms of canonical systems, they equally apply to continuum Schrödinger operators.
For the sake of this introduction, we focus on this perspective. We will present the

4This paper is not part of the habilitation thesis.
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results for potentials V ∈ L1
loc([0,∞)) which are in the limit point case at +∞ and set

an arbitrary self-adjoint boundary condition at 0

cosβf(0) + sin βf ′(0) = 0, β ∈ [0, π). (1.85)

Thus, the domain of the operator HV,β is

D(HV,β) = {f ∈ L2((0,∞)) | f, f ′ ∈ ACloc([0,∞)),−f ′′ + V f ∈ L2((0,∞)), (1.85) holds}.
(1.86)

The corresponding Weyl m-function is

mβ(z) = cosβ∂xψ(0, z) − sin βψ(0, z)
sin β∂xψ(0, z) + cosβψ(0, z) , (1.87)

where ψ(x, z) denotes again the Weyl solution at +∞. Let µβ denote the measure in
the integral representation of the Herglotz function mβ. Let u(x, z) = uβ(x, z), be the
eigensolution satisfying

−∂2
xu(x, z) + V (x)u(x, z) = zu(x, z), u(0, z) = − sin β, ∂xu(0, z) = cosβ.

We define the reproducing kernel

KL(z, w) =
∫ L

0
u(s, z)u(s, w)ds. (1.88)

It is indeed the reproducing kernel for the space of functions

SL :=
{∫ L

0
f(t)u(t, ·)dt | f ∈ L2((0, L))

}

equipped with the L2(R, µβ) scalar product. We say that µβ admits bulk universality
limits at ξ ∈ R, if

lim
L→∞

KL

(
ξ + z

τ(L) , ξ + w
τ(L)

)

KL(ξ, ξ) = sin(π(z − w))
π(z − w) , (1.89)

for an appropriate function τ(L) → ∞ as L → ∞ and z, w ∈ C. The motivation for
this type of rescaling limits stems from random matrix theory, where they are used
to describe the local eigenvalue statistics of unitary ensembles [14]. This goes back to
the seminal work of Wigner [52], where he proposed to use local eigenvalue statistics
of random matrices as a model for local statistical behavior of resonances in scattering
theory.

There is a long history of results, finding the optimal conditions on the spectral
measure to prove existence of universality limits (1.89), see introduction of [18] or the
survey paper [30]. In the paper [18], for the first time bulk universality was proved
with a pointwise purely local condition on the spectral measure, resolving a conjecture
of Avila–Last–Simon [3] and Lubinsky [30]. The result in the setting of continuum
Schrödinger operators is the following:

Theorem 1.48 ([18, Theorem 1.10]). Fix β ∈ [0, π) and consider the operator HV,β

with domain (1.86) and m-function mβ as in (1.87). Let J ⊂ R and assume that for
some 0 < α < π/2,

fβ(ξ) := 1
π

lim
z→ξ

α≤arg(z−ξ)≤π−α

Immβ(z) (1.90)
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converges uniformly in ξ ∈ J and 0 < fµ(ξ) < ∞. Then

lim
L→∞

KL

(
ξ + z

f(ξ)KL(ξ,ξ) , ξ + w
f(ξ)KL(ξ,ξ)

)

KL(ξ, ξ) = sin(π(z − w))
π(z − w) (1.91)

uniformly on compact regions of (ξ, z, w) ∈ J × C × C.

Since boundary behavior of Herglotz functions are not affected by a change of the
measure away from a neighborhood of ξ, condition (1.90) is a local condition. For
Lebesgue a.e. ξ ∈ R, the limit (1.90) exists and it recovers the density of the absolutely
continuous part of µβ, i.e.,

dµβ(ξ) = fβ(ξ)dξ + dµs(ξ)

where µs is a singular measure with respect to Lebesgue measure. A point ξ ∈ R is
called a Lebesgue point of µβ, if it is a Lebesgue point of fβ and

lim
ε→0

µs((ξ − ε, ξ + ε))
2ε = 0.

Pointwise, the limit (1.90) exists at every Lebesgue point of µβ.
The connection to eigenvalue spacing is via the Freud–Levin theorem. For L > 0

and ξ ∈ R, we denote by ξL
j (ξ), for j ∈ Z, the zeros of u(L, ·) counted from ξ, i.e.,

· · · < ξL
−2(ξ) < ξL

−1(ξ) < ξ ≤ ξL
0 (ξ) < ξL

1 (ξ) < . . . (1.92)

with no zeros of u(L, ·) between ξL
j and ξL

j+1.

Theorem 1.49. With the assumptions of Theorem 1.48 we have that for every ξ ∈ J
and j ∈ Z

lim
L→∞

fβ(ξ)KL(ξ, ξ)
(
ξL

j+1(ξ) − ξL
j (ξ)

)
= 1. (1.93)

The statement (1.93) is a consequence of (1.91). This connection was first proved for
orthogonal polynomials by Levin and Lubinsky, rediscovering an idea of Freud [22, 29].
The adaptation to continuum Schrödinger operators was done in [15] for the case β = π

2 ,
but can be directly translated to arbitrary β.

The equal eigenvalue spacing (1.93) with rate KL(ξ, ξ) raises the question about
the asymptotic behavior of KL(ξ, ξ) as L → ∞. This will be the context of the next
section.

1.2.3 Asymptotics for Christoffel functions associated to continuum
Schrödinger operators

In this section, we consider potentials satisfying (1.77) and consider the associated
half-line Schrödinger operators HV,π/2 with Neumann boundary conditions. However,
the same proofs would also apply for Dirichlet boundary conditions. Let KL(z, w) be
the corresponding reproducing kernel (1.88). Note that uπ/2 is the classical Neumann
solution which we will henceforth denote by v, i.e.,

−∂2
xv(x, z) + V (x)v(x, z) = zv(x, z), v(0, z) = 1, ∂xv(0, z) = 0.

Then KL is given by
KL(z, w) =

∫ L

0
v(t, z)v(t, w)dt.
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Note that in this case SL can be given by

SL =
{∫ L

0
cos(t

√
z)f(t)dt | f ∈ L2((0, L))

}
.

Motivated by (1.91) and (1.93), for ξ ∈ R, we are interested in asymptotics of KL(ξ, ξ)
as L → ∞. For z ∈ C, the function

λL(z) = 1
KL(z, z)

is called the Christoffel function. It quantifies the growth rate of eigensolutions with
respect to L, which is known to be an important quantity in spectral theory. It is used
for instance in subordinacy theory [24] or in [28] to describe the absolutely continuous
spectrum of HV . In contrast to universality limits (1.91), it is known that asymptotics
of λL(ξ), for ξ ∈ R, depend on some global properties of the spectral measure, see
e.g. the discussion proceeding Theorem 1.2 in [49]. It turns out that a sufficient
global condition in order to prove asymptotics of λL(ξ) is Stahl–Totik regularity as
presented in Section 1.2.1. Recall that exemplified by Theorem 1.47, this is a fairly
weak assumption on the spectral measure.

We need to set up some notation in order to formulate the main statement of this
section. Let

m(z) = mπ/2(z) = − ψ(0, z)
∂xψ(0, z)

and µ = µπ/2 the corresponding spectral measure and write its decomposition dµ =
fµdξ + dµs with respect to the Lebesgue measure. Let E = σess(HV ) and ρE the
corresponding Martin measure (1.83) and write dρE = fEdξ + dρE,s its Lebesgue de-
composition. The result for Stahl–Totik regular potentials is the following:

Theorem 1.50. Let V be a Stahl–Totik regular potential such that E = σess(HV ) is
Dirichlet regular and µ the corresponding spectral measure. Let I ⊂ Int(E) be a closed
interval such that µ is absolutely continuous in a neighborhood of J and its density fµ

is positive and continuous at every point of J . Then we have

lim
L→∞

LλL(ξ) = fµ(ξ)
fE(ξ) , (1.94)

uniformly for ξ ∈ J .

Initially, Christoffel functions were studied in the setting of orthogonal polynomials.
In this context, the reproducing kernelKL is replaced by the Christoffel-Darboux kernel,
defined analogously to (1.88), but using the orthogonal polynomial of degree n instead
of the Neumann solution at L. For compactly supported measures, a typical result
would be

lim
n→∞nλn(ξ) = fµ(ξ)

fE(ξ) , (1.95)

where λn(ξ) is the Christoffel function associated to the orthonormal polynomials and
fE(ξ) denotes the density of the equilibrium measure. A fundamental result of Máté–
Nevai–Totik [35] establishes (1.95) for the case E = [−2, 2]. More precisely, it is shown
that (1.95) holds provided that µ is Stahl–Totik regular on [−2, 2], fµ(ξ) > 0, log fµ

is integrable in a neighborhood of ξ, and ξ is a Lebesgue point of both the measure µ
and the Szegő function associated to fµ. This has been extended by Totik to arbitrary
compact sets [47].
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Our approach is inspired by a method used by Simon and we obtain a full analog
for continuum Schrödinger operators of all results in [42]. Let us mention that the
assumptions in [42] or in Theorem 1.50 are stronger than the ones in [35]. However,
the conclusion is also stronger, since uniformity in (1.94) requires continuity of fµ, see
also [48]. It is an interesting question if our method could also be used to prove (1.94)
under Lebesgue point and local Szegő conditions as used by Máté–Nevai–Totik.

Limits of Christoffel functions for continuum Schrödinger operators were first stud-
ied by Maltsev in [33]. At that time the notion of regularity for continuum Schrödinger
operators was not available and Maltsev proved (1.94) for potentials V = V̊ + Ṽ , where
V̊ is a periodic continuous potential, Ṽ is so that σess(V ) = σess(V̊ ) and Ṽ is Césaro
decaying, i.e.,

lim
L→∞

1
L

∫ L

0
|Ṽ (x)|dx = 0. (1.96)

Thus, our result generalize [33] in several directions. First of all, if E is the spectrum
of a continuum Schrödinger operator, then generically there is no periodic potential so
that the essential spectrum of the associated operator is E. Moreover, even if E is the
spectrum of a periodic Schrödinger operator, a regular potential does not necessarily
satisfy (1.96). A counterexample can be found even in the simplest case E = [0,∞)
with V̊ ≡ 0. It is shown in [17, Example 1.13] that the potential defined piecewise by
V (x) = (−1)⌊2n(x−n)⌋ on x ∈ [n− 1, n) for integer n is regular with σess(LV ) = [0,∞),
but (1.96) does not hold. On the other hand, since periodic potentials are regular, it
follows from (1.82) and (1.96) that the potentials considered in [33] are Stahl–Totik
regular.

We can now combine Theorem 1.50 with Theorem 1.48 and Theorem 1.49. For
ξ ∈ R, let ξL

j (ξ) denote the zeros of ∂Lv(L, ·) as in (1.92).

Theorem 1.51. With the assumptions of Theorem 1.50 we have

lim
L→∞

KL

(
ξ + z

L , ξ + w
L

)

KL(ξ, ξ) = sin(πfE(ξ)(z − w))
πfE(ξ)(z − w) ,

and

lim
L→∞

LfE(ξ)
(
ξL

j+1(ξ) − ξL
j (ξ)

)
= 1 (1.97)

uniformly for ξ ∈ I.

We conclude with a summary of Section 1.2. In Section 1.2.1 we presented a theory
of Stahl Totik regularity for continuum Schrödinger operators and showed that for
regular potentials we can describe the global asymptotics of the eigenvalues of HL

V

as L → ∞. In Section 1.2.2 we showed that universality limits and equal eigenvalue
spacing with scale λL(ξ) hold under a weak purely local condition on the Weyl m-
function. Finally, in Section 1.2.3 we showed that Stahl–Totik regularity is a suitable
global assumption on the potential that allows for the computation of asymptotics
λL(ξ) to obtain universality and equal eigenvalue spacing with explicit scale L.
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ORTHOGONAL RATIONAL FUNCTIONS WITH REAL POLES,

ROOT ASYMPTOTICS, AND GMP MATRICES

BENJAMIN EICHINGER, MILIVOJE LUKIĆ, AND GIORGIO YOUNG

Abstract. There is a vast theory of the asymptotic behavior of orthogonal
polynomials with respect to a measure on R and its applications to Jacobi
matrices. That theory has an obvious affine invariance and a very special role
for ∞. We extend aspects of this theory in the setting of rational functions with
poles on R = R∪{∞}, obtaining a formulation which allows multiple poles and

proving an invariance with respect to R-preserving Möbius transformations.
We obtain a characterization of Stahl–Totik regularity of a GMP matrix in
terms of its matrix elements; as an application, we give a proof of a conjecture
of Simon – a Cesàro–Nevai property of regular Jacobi matrices on finite gap
sets.

1. Introduction

There is a vast theory of orthogonal polynomials with respect to measures on
C and their root asymptotics, exemplified by the Ullman–Stahl–Totik theory of
regularity. Let μ be a compactly supported probability measure and {pn}∞

n=0 the
corresponding orthonormal polynomials, obtained by the Gram–Schmidt process
from {zn}∞

n=0 in L2(dμ). Then

(1.1) lim inf
n→∞

|pn(z)|1/n ≥ eGE(z,∞)

for z outside the convex hull of supp μ, where E is the essential support of μ and GE

denotes the potential theoretic Green function for the domain C \E; if that domain
is not Greenian, one takes GE = +∞ instead. For measures compactly supported
in R, this theory can be interpreted in terms of self-adjoint operators. In particular,
for any bounded half-line Jacobi matrix

J =

⎛
⎜⎜⎜⎜⎝

b1 a1

a1 b2 a2

a2
. . .

. . .

. . .

⎞
⎟⎟⎟⎟⎠

with a� > 0, b� ∈ R,

(1.2) lim sup
n→∞

(
n∏

�=1

a�

)1/n

≤ Cap σess(J),

Received by the editors October 30, 2020, and, in revised form, December 1, 2020, and February
16, 2022.

2020 Mathematics Subject Classification. Primary 47B36, 42C05.
The first author was supported by Austrian Science Fund FWF, project no: J 4138-N32.

The second author was supported in part by NSF grant DMS–1700179. The third author was
supported in part by NSF grant DMS–1745670.

c©2023 by the author(s) under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)

1



2 B. EICHINGER, M. LUKIĆ, AND G. YOUNG

where Cap denotes logarithmic capacity. For both of these universal inequalities,
the case of equality (and existence of limit) is called Stahl–Totik regularity [27]; the
theory originated with the case E = [−2, 2], first studied by Ullman [30].

We extend aspects of this theory to the setting of rational functions with poles in
R = R∪{∞}. One motivation for this is the search for a more conformally invariant
theory. Statements such as (1.1), (1.2) rescale in obvious ways with respect to
affine transformations (automorphisms of C) which preserve R, so it is obvious
that an affine pushforward of a Stahl–Totik regular measure is Stahl–Totik regular.
However, the point ∞ has a very special role throughout the theory: for a Möbius
transformation f which does not preserve ∞, pn ◦ f are rational functions with
a pole at f−1(∞), and f(J) as defined by the functional calculus is not a finite
band matrix. Thus, it is a nontrivial question whether a Möbius pushforward of a
Stahl–Totik regular measure is Stahl–Totik regular.

The set of Möbius transformations which preserve R is the semidirect group
product PSL(2, R) � {id, z �→ −z}, whose normal subgroup PSL(2, R) corresponds
to the orientation preserving case. Denote by f∗μ the pushforward of μ, defined
by (f∗μ)(A) = μ(f−1(A)) for Borel sets A. As an example of our techniques, we
obtain the following:

Theorem 1.1. Let f ∈ PSL(2, R) � {id, z �→ −z}. If μ is a Stahl–Totik regular
measure on R and ∞ /∈ supp(f∗μ), then the pushforward measure f∗μ is also Stahl–
Totik regular.

However, we will mostly work in the more general setting when multiple poles
on R are allowed, which arises naturally in the spectral theory of self-adjoint op-
erators. Denote by Tf,dμ the multiplication operator by f in L2(dμ). The matrix
representation for Tx,dμ(x) in the basis of orthogonal polynomials is a Jacobi ma-
trix, and through this classical connection, the theory of orthogonal polynomials is
inextricably linked to the spectral theory of Jacobi matrices. In this matrix rep-
resentation, resolvents T(c−x)−1,dμ(x) are not finite-diagonal matrices. However, in
a basis of orthogonal rational functions with poles at c1, . . . , cg, ∞, the multiplica-
tion operators T(c1−x)−1,dμ(x), . . . , T(cg−x)−1,dμ(x), Tx,dμ(x) all have precisely 2g +1
nontrivial diagonals. The corresponding matrix representations are called GMP
matrices; they were introduced by Yuditskii [32].

Self-adjoint operators and their matrix representations are an important part of
this work, so we choose to present the theory in a more self-contained way, using
self-adjoint operators from the ground up; this has similarities with [22]. Some
proofs could be shortened by using orthogonal polynomials with respect to varying
weights [27, Chapter 3], but some facts rely on the precise structure obtained by
the periodically repeating sequence of poles.

We should also compare this to the case of CMV matrices: for a measure sup-
ported on the unit circle, Stahl–Totik regularity is still defined in terms of orthogo-
nal polynomials, but the CMV basis [4,22] is given in terms of positive and negative
powers of z, i.e., orthonormal rational functions with poles at ∞ and 0. The sym-
metries in that setting lead to explicit formulas for the CMV basis in terms of the
orthogonal polynomials; it is then a matter of calculation to relate the exponen-
tial growth rate of the CMV basis to that of the orthogonal polynomials, and to
interpret regularity in terms of the CMV basis. In our setting, there is no such sym-
metry and no formula for orthonormal rational functions in terms of orthonormal
polynomials.
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In order to state our results in a conformally invariant way, we will use the
following notations and conventions throughout the paper. The measure μ will be
a probability measure on R. We denote by supp μ its support in R, and we consider
its essential support (the support with isolated points removed), denoted

E = ess supp μ.

We will always assume that μ is nontrivial; equivalently, E 
= ∅.
Fix a finite sequence with no repetitions, C = (c1, . . . , cg+1) with ck ∈ R\supp μ

for all k. Consider the sequence {rn}∞
n=0 where r0 = 1 and for n = j(g + 1) + k,

1 ≤ k ≤ g + 1,

(1.3) rn(z) =

{
1

(ck−z)j+1 ck ∈ R,

zj+1 ck = ∞.

Applying the Gram–Schmidt process to this sequence in L2(dμ) gives the sequence
of orthonormal rational functions {τn}∞

n=0 whose behavior we will study. We note
that the special case supp μ ⊂ R, g = 0, C = (∞) corresponds to the standard
construction of orthonormal polynomials associated to the measure μ (note that,
since we denote by supp μ the support in R, the statement supp μ ⊂ R implies that
μ is compactly supported in R), and our first results are an extension of the same
techniques.

The first result is a universal lower bound on the growth of {τn}∞
n=0 in terms of a

potential theoretic quantity. If E is not a polar set, we use the (potential theoretic)
Green function for the domain C \ E, denoted GE, and we define

(1.4) GE(z,C) =

{
1

g+1

∑g+1
k=1 GE(z, ck) E is not polar,

+∞ E is polar.

Theorem 1.2. For all z ∈ C \ R,

lim inf
n→∞

|τn(z)|1/n ≥ eGE(z,C).

This is a good place to point out that our current setup is not related to the
recent paper [13], in which the behavior was compared to a Martin function at a
boundary point of the domain. Here, the behavior is compared to a combination
of Green functions (1.4), all the poles are in the interior of the domain C \ E, and
the difficulty comes instead from the multiple poles.

Another universal inequality for orthonormal polynomials comes from comparing
their leading coefficients to the capacity of E. In our setting, the analog of the
leading coefficient must be considered in a pole-dependent way. Denote

Ln = span{r� | 0 ≤ � ≤ n}.

By the nature of the Gram–Schmidt process, there is a κn > 0 such that

τn − κnrn ∈ Ln−1.

The Gram–Schmidt process can be reformulated as the L2(dμ)-extremal problem

(1.5) κn = max
{
Re κ : f = κrn + h, h ∈ Ln−1, ‖f‖L2(dμ) ≤ 1

}
.

By strict convexity of the L2-norm, these L2-extremal problems have unique ex-
tremizers given by f = τn, and κn is explicitly characterized as a kind of leading
coefficient for τn with respect to the pole at ck where n = j(g+1)+k, 1 ≤ k ≤ g+1.
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Below, we will also relate the constants κn to off-diagonal coefficients of certain ma-
trix representations.

The growth of the leading coefficients κn will be studied along sequences n =
j(g + 1) + k for a fixed k, and bounded by quantities related to the pole ck. If E is
not a polar set, it is a basic property of the Green function that the limits

γk
E =

{
limz→ck

(GE(z, ck) + log |z − ck|), ck 
= ∞,

limz→ck
(GE(z, ck) − log |z|), ck = ∞

exist. Note that if ck = ∞, γk
E is precisely the Robin constant for the set E. We

further define constants λk by

(1.6) log λk =

⎧
⎨
⎩

γk
E +

∑
1≤�≤g+1

� �=k
GE(ck, c�) E is not polar,

+∞ E is polar.

Theorem 1.3. For all 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

(1.7) lim inf
j→∞

κ
1/n(j)
n(j) ≥ λ

1/(g+1)
k .

Theorem 1.4. The following are equivalent:

(i) For some 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

lim
j→∞

κ
1/n(j)
n(j) = λ

1/(g+1)
k ;

(ii) For all 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

lim
j→∞

κ
1/n(j)
n(j) = λ

1/(g+1)
k ;

(iii)

lim
n→∞

(
g+1∏

�=1

κn+�

)1/n

=

(
g+1∏

k=1

λk

)1/(g+1)

;

(iv) For q.e. z ∈ E, we have lim supn→∞ |τn(z)|1/n ≤ 1;
(v) For some z ∈ C+, lim supn→∞ |τn(z)|1/n ≤ eGE(z,C);
(vi) For all z ∈ C, lim supn→∞ |τn(z)|1/n ≤ eGE(z,C);
(vii) Uniformly on compact subsets of C \ R, limn→∞ |τn(z)|1/n = eGE(z,C).

Definition 1.5. The measure μ is C-regular if it obeys one (and therefore all) of
the assumptions of Theorem 1.4.

In this terminology, Stahl–Totik regularity is precisely (∞)-regularity, i.e., C-
regularity for the special case supp μ ⊂ R, g = 0, C = (∞). Theorems 1.2, 1.3,
1.4 are closely motivated by foundational results for Stahl–Totik regularity. A new
phenomenon appears through the periodicity with which poles are taken in (1.3) and
the resulting subsequences n(j) = j(g+1)+k: since κn is a normalization constant
for τn, it is notable that control of κn along a single subsequence n(j) = j(g+1)+k in
Theorem 1.4(i) provides control over the entire sequence. This phenomenon doesn’t
have an exact analog for orthogonal polynomials, where g = 0. We will also see
below that this is essential in order to characterize the regularity of a GMP matrix
using only the entries of the matrix itself and not its resolvents.

Moreover, we show that the regular behavior described by Theorem 1.4 is inde-
pendent of the set of poles C:
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Theorem 1.6. Let C1,C2 be two finite sequences of elements from R\ supp μ, not
necessarily of the same length. Then μ is C1-regular if and only if it is C2-regular.

Corollary 1.7. Let supp μ ⊂ R. Let C be a finite sequence of elements from
R \ supp μ. Then μ is C-regular if and only if it is Stahl–Totik regular.

Thus, Theorem 1.4 should not be seen as describing equivalent conditions for a
new class of measures, but rather a new set of regular behaviors for the familiar
class of Stahl–Totik regular measures.

We consistently work with poles on R since our main interest is tied to self-
adjoint problems. Some of our results are in a sense complementary to the setting
of [27, Section 6.1], where poles are allowed in the complement of the convex hull of
supp μ, and the behavior of orthogonal rational functions is considered with respect
to a Stahl–Totik regular measure. Due to this, it is natural to expect that these
results hold more generally, for measures on C and general collections of poles and
Möbius transformations. Moreover, in our setup the poles are repeated exactly
periodically, but we expect this can be generalized to a sequence of poles which has
a limiting average distribution. Related questions for orthogonal rational functions
were also studied by [3, 10].

As noted in [27, Section 6.1], poles in the gaps of supp μ can cause interpolation
defects in the problem of interpolation by rational functions. In our work, these
interpolation defects show up as possible reductions in the order of the poles. For
example, consider C = (∞, 0). Then, by construction, τ2j+1 is allowed a pole at
0 of order at most j. However, if μ is symmetric with respect to z �→ −z, the
functions τn will have an even/odd symmetry. Since τ2j+1 contains a nontrivial
multiple of zj+1, it follows that τ2j+1(z) = (−1)j+1τ2j+1(−z). By this symmetry,
the actual order of the pole at 0 is j + 1 − k for some even k, so it cannot be equal
to j (it will follow from our results that in this case, the order of the pole is j − 1).
The same effect can be seen for the pole at ∞ for C = (0, ∞). In the polynomial
case, this does not occur: pn always has a pole at ∞ of order exactly n.

We will consider at once the distribution of zeros of τn and the possible reductions
in the order of the poles. We will prove that all zeros of τn are real and simple, and
that n − g ≤ deg τn ≤ n. We define the normalized zero counting measure

νn =
1

n

∑

w:τn(w)=0

δw.

Although we normalize by n, νn may not be a probability measure: however 1 −
g/n ≤ νn(R) ≤ 1. Therefore, normalizing by deg τn instead of by n would not affect
the limits as n → ∞.

We will now describe the weak limit behavior of the measures νn as n → ∞. To
avoid pathological cases, we assume that E is not polar; in that case, denoting by
ωE(dx, w) the harmonic measure for the domain C \E at the point w, we define the
probability measure on E,

ρE,C =
1

g + 1

g+1∑

j=1

ωE(dx, cj).

The results below describe weak limits of measures in the topology dual to C(R).

Theorem 1.8. Let μ be a probability measure on R. Assume that E is not a polar
set.
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(a) If μ is C regular, then w-limn→∞ νn = ρE,C.
(b) If w-limn→∞ νn = ρE,C, then μ is C regular or there exists a polar set

X ⊂ E such that μ(R \ X) = 0.

We now turn to matrix representations of self-adjoint operators. Fix a sequence
C = (c1, . . . , cg+1) such that ck∞ = ∞ for some 1 ≤ k∞ ≤ g + 1. A half-line GMP
matrix [32] is the matrix representation for multiplication by x in the basis {τn}∞

n=0

for this sequence C; its matrix elements are

Amn =

∫
τm(x)xτn(x) dμ(x).

The condition that ck∞ = ∞ for some k∞ guarantees that Amn = 0 for |m − n| >
g +1, so these matrix elements generate a bounded operator A on �2(N0) such that
Amn = 〈em, Aen〉, where (en)∞

n=0 denotes the standard basis of �2(N0). We say that
A ∈ A(C).

GMP matrices have the property that some of their resolvents are also GMP
matrices; namely, for any k 
= k∞, (ck − A)−1 ∈ A(f(C)) where f is the Möbius
transform f : z �→ (ck − z)−1 and f(C) = (f(c1), . . . , f(cg+1)).

Note that the special case g = 0, C = (∞) gives precisely a Jacobi matrix. A
Jacobi matrix is said to be regular if it is obtained by this construction from a
regular measure; analogously, we will call a GMP matrix regular if it is obtained
from a regular measure. Just as regularity of a Jacobi matrix can be characterized
in terms of its off-diagonal entries, we will show that regularity of a GMP matrix
can be characterized in terms of its entries in the outermost nontrivial diagonal.
We will also obtain a GMP matrix analog of the inequality (1.2).

The GMP matrix has an additional block matrix structure; in particular, for a
GMP matrix with ck∞ = ∞, on the outermost nonzero diagonal m = n−g −1, the
only nonzero terms appear for n = j(g + 1) + k∞, and those are strictly positive.
Thus, we denote

(1.8) βj = 〈ej(g+1)+k∞ , Ae(j+1)(g+1)+k∞〉.
Theorem 1.9. Fix a probability measure μ with supp μ ⊂ R and a sequence C =
(c1, . . . , cg+1) with ck = ∞. Then

(1.9) lim sup
j→∞

(
j∏

�=1

β�

)1/j

≤ λ−1
k∞

.

Moreover, the measure μ is Stahl–Totik regular if and only if

(1.10) lim
j→∞

(
j∏

�=1

β�

)1/j

= λ−1
k∞

.

The proof will use a relation between the sequence {βj}∞
j=1 and the constants

{κj(g+1)+k∞}∞
j=1. In particular, the characterization of regularity in Theorem 1.9

is made possible by the characterization of regularity in terms of the subsequence
{κj(g+1)+k}∞

j=1 for any single k. Theorem 1.9 also corroborates the perspective that
regularity of the measure is the fundamental notion which manifests itself equally
well in many different matrix representations.

Since the resolvents (ck − A)−1 are also GMP matrices and their measures are
pushforwards of the original measure, they are also regular GMP matrices; in this
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sense, Theorem 1.9 provides g + 1 criteria for regularity, one corresponding to each
subsequence n(j) = j(g + 1) + k, 1 ≤ k ≤ g + 1.

As an application of this theory, we show that it provides a proof of a theorem
for Jacobi matrices originally conjectured by Simon [23]. Let E ⊂ R be a compact
finite gap set,

(1.11) E = [b0, a0] \
g⋃

k=1

(ak,bk),

and denote by T +
E the set of almost periodic half-line Jacobi matrices with σess(J) =

σac(J) = E [5, 14]. Through algebro-geometric techniques and the reflectionless
property, this class of Jacobi matrices has been widely studied for their spectral
properties and quasiperiodicity (see also [26, 31] for more general spectral sets).
They also provide natural reference points for perturbations, which is our current
interest. On bounded half-line Jacobi matrices J , we consider the metric

(1.12) d(J, J̃) =

∞∑

k=1

e−k(|ak − ãk| + |bk − b̃k|).

On norm-bounded sets of Jacobi matrices, convergence in this metric corresponds
to strong operator convergence. However, instead of distance to a fixed Jacobi
matrix J̃ , we will consider the distance to T +

E ,

d(J, T +
E ) = inf

J̃∈T +
E

d(J, J̃) = min
J̃∈T +

E

d(J, J̃).

Denote by S+ the right shift operator on �2(N0), S+en = en+1. The condition
d((S∗

+)mJSm
+ , T +

E ) → 0 as m → ∞ is called the Nevai condition. For E = [−2, 2],
this corresponds simply to the commonly considered condition an → 1, bn → 0
as n → ∞ [18]. In general, as a consequence of [21], the Nevai condition implies
regularity. The converse is false; however:

Theorem 1.10. If E ⊂ R is a compact finite gap set and J is a regular Jacobi
matrix with σess(J) = E, then

(1.13) lim
N→∞

1

N

N∑

m=1

d((S∗
+)mJSm

+ , T +
E ) = 0.

The condition (1.13) is described as the Cesàro–Nevai condition; it was first
studied by Golinskii–Khrushchev [15] in the OPUC setting with essential spectrum
equal to ∂D. Theorem 1.10 was conjectured by Simon [23] and proved in the special
case when E is the spectrum of a periodic Jacobi matrix with all gaps open by using
the periodic discriminant and techniques from Damanik–Killip–Simon [7] to reduce
to a block Jacobi setting. It was then proved by Krüger [17] by very different
methods under the additional assumption infn an > 0. While this is a common
assumption in the ergodic literature, regular Jacobi matrices do not always satisfy
it: [22, Example 1.4] can easily be modified to give a regular Jacobi matrix with
spectrum [−2, 2] and inf an = 0. We prove Theorem 1.10 in full generality by
applying Simon’s strategy and, instead of the periodic discriminant and techniques
from [7], using the Ahlfors function, GMP matrices, and techniques of Yuditskii
[32].

For the compact finite gap set E ⊂ R, among all analytic functions C \ E → D
which vanish at ∞, the Ahlfors function Ψ takes the largest value of Re(zΨ(z))|z=∞.
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The Ahlfors function has precisely one zero in each gap, denoted ck ∈ (ak,bk) for
1 ≤ k ≤ g, a zero at cg+1 = ∞, and no other zeros; see also [25, Chapter 8]. In
particular, for the finite gap set E, this generates a particularly natural sequence of
poles CE = (c1, . . . , cg, ∞).

The Ahlfors function was used by Yuditskii [32] to define a discriminant for finite
gap sets,

(1.14) ΔE(z) = Ψ(z) +
1

Ψ(z)
.

This function is not equal to the periodic discriminant, but it has some similar prop-
erties and it is available more generally (even when E is not a periodic spectrum).
Namely, ΔE extends to a meromorphic function on C and (ΔE)−1([−2, 2]) = E.
It was introduced by Yuditskii to solve the Killip–Simon problem for finite gap
essential spectra. In fact, the discriminant is a rational function of the form

ΔE(z) = λg+1z + d +

g∑

k=1

λk

ck − z
(1.15)

for some d ∈ R; in particular, we will explain that the constants λj > 0 in (1.15)
match the general definition (1.6).

As a first glimpse of our proof of Theorem 1.10, we note that it uses the fol-
lowing chain of implications. Starting with a regular Jacobi matrix with essential
spectrum E, by a change of one Jacobi coefficient, which does not affect regularity,
we can assume that ck /∈ supp μ (Lemma 7.1). Under this assumption, regularity
of the Jacobi matrix implies regularity of the corresponding GMP matrix A and
the resolvents (ck − A)−1, k = 1, . . . , g, which can be characterized in terms of
their coefficients by Theorem 1.9. By properties of the Yuditskii discriminant, this
further implies regularity of the block Jacobi matrix ΔE(A). Let us briefly recall
that a block Jacobi matrix is of the form

(1.16) J =

⎡
⎢⎢⎢⎢⎢⎢⎣

w0 v0

v∗
0 w1 v1

v∗
1 w2 v2

v∗
2

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where vj and wj are d × d matrices, wj = w∗
j , and det vj 
= 0 for each j. Type 3

block Jacobi matrices have each vj lower triangular and positive on the diagonal.
An extension of regularity to block Jacobi matrices was developed by Damanik–
Pushnitski–Simon [8]; in particular, J is regular for the set [−2, 2] if σess(J) = [−2, 2]
and

(1.17) lim
n→∞

⎛
⎝

n∏

j=1

|det vj |

⎞
⎠

1/n

= 1.

This chain of arguments will result in Lemma 1.11:

Lemma 1.11. Let J be a regular Jacobi matrix, E = σess(J) a finite gap set, and
CE the corresponding sequence of zeros of the Ahlfors function. Assuming ck /∈ σ(J)
for 1 ≤ k ≤ g, denote by A the GMP matrix corresponding to J with respect to the
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sequence CE. Then ΔE(A) is a regular type 3 block Jacobi matrix with essential
spectrum [−2, 2].

With Lemma 1.11, it will follow that J = ΔE(A) obeys a Cesàro–Nevai condition.
That Cesàro–Nevai condition will imply (1.13) by a modification of arguments of
[32]. The strategy is clear: just as [32] uses a certain square-summability in terms
of vj , wj to prove finiteness of �2-norm of {d((S∗

+)mJSm
+ , T +

E )}∞
m=0, we will use

Cesàro decay in terms of vj , wj to conclude the Cesàro decay (1.13). This can be
expected due to a certain locality in the dependence between the terms of the series
considered; this idea first appeared in [23] in the setting of periodic spectra with
all gaps open. However, some care is needed, since the locality is only approximate
in some steps; this is already visible in (1.12). Also, substantial modifications are
needed throughout the proof due to the possibility of lim inf‖vj‖ = 0 (this cannot
happen in the Killip–Simon class), which locally breaks some of the estimates. The
fix is that this can only happen along a sparse subsequence, but the combination of
a bad sparse subsequence and approximate locality means that we cannot simply
ignore a bad subsequence once from the start; we must maintain it throughout
the proof. A related issue arises with the Cesàro version of a Killip–Simon type
functional. We will describe the necessary modifications to the detailed analysis in
[32].

The rest of the paper will not exactly follow the order given in this section.
In Section 2, we describe the behavior of our problem with respect to Möbius
transformations, and we describe the distribution of zeros of the rational function
τn. In Section 3, we recall the structure of GMP matrices and relate their matrix
coefficients to the quantities κn, and use this to provide a first statement about
exponential growth of orthonormal rational functions on C \ R. In Section 4, we
combine this with potential theoretic techniques to characterize limits of 1

n log|τn|
as n → ∞ and prove the universal lower bounds. In Section 5, we prove the results
for C-regularity and Stahl–Totik regularity. In Section 6 we describe a proof of
Theorem 1.10.

2. Orthonormal rational functions and Möbius transformations

In Section 1, starting from the measure μ and sequence of poles C, we defined
a sequence {rn}∞

n=0 and the orthonormal rational functions {τn}∞
n=0. In the next

statement, we will denote these by rn(z;C) and τn(z; μ,C), in order to state pre-
cisely the invariance of the setup with respect to Möbius transformations.

Lemma 2.1. If f is a Möbius transformation which preserves R, then

(2.1) τn(z; μ,C) = ρnτn(f(z); f∗μ, f(C)),

where f(C) = (f(c1), . . . , f(cg+1)) and

ρ =

{
+1 f ∈ PSL(2, R),

−1 f ∈ (PSL(2, R) � {id, z �→ −z}) \ PSL(2, R).

Proof. Note that the sequence {rn}∞
n=0 does not have this property: rn(z;C) is not

equal to ρnrn(f(z); f(C)). However, if we denote

Ln(C) = span{r�(·;C) | 0 ≤ � ≤ n},
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then it suffices to have

(2.2) rn(f(z); f(C)) − cnρnrn(z;C) ∈ Ln−1(C)

for some constants cn > 0. If (2.2) holds, then applying the Gram–Schmidt process
to the sequences {rn(f(z); f(C))}∞

n=0 and {rn(z;C)}∞
n=0 will give the same sequence

of orthonormal functions, up to the sign change ρn, which is precisely (2.1).
Note that if (2.1) holds for f1, f2, it holds for their composition, so it suffices

to verify (2.2) for a set of generators of PSL(2, R) � {id, z �→ −z}. In particular,
(2.2) is checked by straightforward calculations for affine transformations and for
the inversion f(z) = −1/z, which implies the general statement since affine maps
and inversion generate PSL(2, R) � {id, z �→ −z}. �

Let us emphasize what Lemma 2.1 does and what it doesn’t do. Since the Möbius
transformation acts on both the measure and the sequence of poles, Lemma 2.1 does
not by itself prove Theorem 1.1. Lemma 2.1 can only say that if μ is Stahl–Totik
regular, then f∗μ is (f(∞))-regular, which is not sufficient unless f is affine. The
proof of Theorem 1.1 will be more involved.

However, Lemma 2.1 provides a very useful conformal invariance for many of
our proofs. This can be compared to choosing a convenient reference frame. Since
potential theoretic notions such as Green functions are conformally invariant, our
results will be invariant with respect to Möbius transformations. We will often use
this invariance in the proofs to fix a convenient point at ∞.

Note that this will be possible even though some objects are not conformally
invariant. Some of our results compare the sequences κn with the λk, and although
those objects are not preserved under conformal transformations, both sequences
are affected in a compatible way so that the inequalities and equalities are preserved.
Explicitly, fix k and n = j(g + 1) + k and a Möbius transformation f ∈ PSL(2, R)
(a reflection can be considered separately). Let us denote a local dilation factor

f ′(ck) = limz→ck

rk(z,C)
rk(f(z),f(C)) . Then, we use Lemma 2.1 to compute

κn(j) = lim
z→ck

τn(z, μ,C)

rn(z,C)
= lim

z→ck

τn(f(z), f∗μ, f(C))

rn(z,C)
=

κ̃n(j)

f ′(ck)j+1
,

where κ̃n(j) is the leading coefficient τn(z, f∗μ, f(C))−κ̃nrn(z, f(ck))∈Ln−1(f(C)).
If E is nonpolar, the Green function is conformally invariant so we find by another
computation

log λ̃k := lim
w→f(ck)

(
Gf(E)(w, f(ck)) − log|rk(w, f(C))|

)
+
∑

1≤�≤k
� �=k

Gf(E)(f(ck), f(c�))

= lim
z→ck

(
GE(z, ck)−log|rk(z,C)|+log

∣∣∣∣
rk(z,C)

rk(f(z), f(C))

∣∣∣∣
)

+
∑

1≤�≤k
� �=k

GE(ck, c�)

= log λk + log(f ′(ck)),

where we have used that f ∈ PSL(2, R) =⇒ f ′ > 0 on R. Thus, λ̃k = f ′(ck)λk. If
E is polar, then f(E) is as well. From these calculations, it becomes elementary to
verify that statements such as those in Theorems 1.3, 1.4 are conformally invariant.

Note that technical ingredients of the proof, such as polynomial factorizations,
give a preferred role to ∞ so they break symmetry. For instance, we will often use
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the observation that the subspace Ln can be represented as

(2.3) Ln =

{
P

Rn
| P ∈ Pn

}

for some suitable polynomial Rn with factors which account for finite poles ck 
= ∞.
We will use the representation (2.3) after placing a convenient point at ∞. This
idea is already seen in the next proof.

Lemma 2.2. All zeros of the rational function τn are simple and lie in R. More-
over, n − g ≤ deg τn ≤ n.

Let n = j(g + 1) + k, 1 ≤ k ≤ g + 1, and denote by I the connected component
of ck in R \ supp μ. Then τn has no zeros in I and at most one zero in any other
connected component of R \ supp μ.

Proof. Fix 1 ≤ k ≤ g + 1 and without loss of generality, assume ck = ∞. Then,
in the representations (2.3), we can notice that Rn−1 = Rn. In particular, then
τn ∈ Ln \ Ln−1 implies the representation τn(j) = Pn

Rn
for some polynomial Pn of

degree n.
Recall that τn, n = k + (j − 1)(g + 1) is the unique minimizer for the extremal

problem (1.5). By complex conjugation symmetry, the minimizer is real. To proceed
further, we study zeros of Pn by using Markov correction terms.

We say that a rational function M is an admissible Markov correction term if
M > 0 a.e. on E and M(z)Pn(z) ∈ Pn−1. In this case, using 〈Mτn, τn〉 > 0, we see
that the function g(ε) = ‖τn − εMτn‖2 obeys

g′(0) = −2〈Mτn, τn〉 < 0.

Thus, for small enough ε > 0, the function

τ̃n = τn − εMτn

obeys ‖τ̃n‖L2(dμ) < ‖τn‖L2(dμ). Since τ̃n is of the form τ̃n = κnzj+1 + h(z) for
some h(z) ∈ Ln−1 and in particular has the same leading coefficient as τn, the
function τ̃n/‖τ̃n‖L2(dμ) ∈ Ln contradicts extremality of τn. In other words, for the
extremizer τn, there cannot be any admissible Markov correction terms.

Assume that Pn has a nonreal zero w ∈ C\R. Then, since τn is real, Pn(w) = 0,
so the Markov correction term M(z; w) = 1

(z−w)(z−w̄) would be admissible, leading

to contradiction.
Assume that Pn has two zeros x1, x2 in the same connected component of R \

supp μ; then, the Markov correction term

M(z; x1, x2) =
1

(z − x1)(z − x2)

would be admissible, leading to contradiction.
There are no zeros of Pn in I. Otherwise, if x ∈ I was a zero, the Markov term

M(z, x) =

{
1

z−x , x < inf E,
1

x−z , x > sup E

would be admissible.
Finally, all zeros of Pn are simple: otherwise, if x0 ∈ R was a double zero, the

Markov term

M(z, x0) =
1

(z − x0)2
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would be admissible.
The properties of zeros of τn follow from those of Pn. There may be cancellations

in the representation τn = Pn

Rn
, but since Pn has at most a simple zero at c�, the

only possible cancellations are simple factors (z−c�), � 
= k. Thus, n−g ≤ deg τn ≤
n. �

The use of Markov correction factors is standard in the Chebyshev polynomial
literature and is applied here with a modification for the L2-extremal problem (in
the L∞-setting, singularities in M are treated with a separate argument near the
singularity, which would not work here).

Corollary 2.3. The measures νn are a precompact family with respect to weak
convergence on C(R). Any accumulation point ν = lim�→∞ νn�

is a probability
measure and supp ν ⊂ E.

Proof. By Lemma 2.2, νn(R) ≤ 1, so precompactness follows by the Banach-Alaoglu
theorem. If ν = lim�→∞ νn�

, then since 1 − g
n�

≤ νn�
(R) ≤ 1, ν(R) = 1.

Let (a,b) be a connected component of R \ E. Let us prove that ν((a,b)) = 0.
By Möbius invariance, it suffices to assume that (a, b) is a bounded subset of R.

Fix r ∈ N. As supp μ \ E is a discrete set, we have

#{x ∈ supp μ : a + 1/r < x < b − 1/r} = M < ∞.

So, by Lemma 2.2, νn�
((a+1/r,b−1/r)) ≤ 2M+1

n�
and by the Portmanteau theorem

and sending r → ∞, ν((a,b)) = 0 and supp ν ⊂ E. �

3. GMP matrices and exponential growth of orthonormal rational
functions

In this section, we consider orthonormal rational functions through the frame-
work of GMP matrices. We begin by recalling the structure of GMP matrices [32].
The GMP matrix has a tridiagonal block matrix structure, with the beginnings of
new blocks corresponding to occurrences of ck∞ = ∞. Explicitly,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

B̃0 Ã0

Ã∗
0 B1 A1

A∗
1 B2 A2

A∗
2

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where B̃0 is a k∞ × k∞ matrix, Ã0 is a k∞ × (g + 1) matrix. For j ≥ 0, Aj , Bj

are (g + 1) × (g + 1) matrices; while for j ≥ 1 these appear in A unmodified in the

above, Ã0 and B̃0 are projections of A0 and B0 respectively. More precisely, let
X− denote the upper triangular part of a matrix X (excluding the diagonal) and
X+ the lower triangular part (including the diagonal). Then, indexing the entries
of Aj , Bj , j ≥ 0 from 0 to g, we see they are of the form

Aj = �pj
�δ ᵀ
0 , Bj = Ĉ + (�qj�p

ᵀ
j )+ + (�pj�q

ᵀ
j )−,(3.1)

where �pj , �qj ∈Rg+1 , with (�pj)0 >0 and Ĉ = diag{0, ck∞+1, . . . , cg+1, c1, . . . , ck∞−1}
(with the obvious modification if k∞ = 1 or k∞ = g+1) and �δ0 denotes the standard
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first basis vector of Rg+1. Ã0 and B̃0 are projections of A0 and B0,

Ã0 = ΠA0 B̃0 = ΠB0Π
∗

with Π the block matrix Π :=
[
0k∞×(g+1−k∞)|Ik∞×k∞

]
. We will refer to {�pj , �qj}j≥1

as the GMP coefficients of A. While the precise structure will not be essential
throughout the paper, we point out two things. First on the outermost diagonal
of A in each block there is only one nonvanishing entry, given by (�pj)0, which is
positive and which is at a different position depending on the position of ∞ in the
sequence C. And secondly, in general as a self-adjoint matrix Bj could depend on
(g+1)(g+2)/2 parameters, but we see that in fact they only depend on 2(g+1). This
is not that surprising due to their close relation to three-diagonal Jacobi matrices.
A similar phenomenon also appears for their unitary analogs [6].

Remark 1. For later reference, we provide an alternative point of view on the block
structure of A. The structure provided above is chosen so that ck∞ is at the first
diagonal position of the B-blocks. Recall also that to these blocks we attached
a column �p (with positive first entry (�p)0 > 0) to the right and a row �p ᵀ

j at the
bottom. If, instead of viewing this as a block matrix structure with blocks of size
(g+1)×(g+1), we view this structure as overlapping blocks of size (g+2)×(g+2)
which overlap at the positions of ck∞ , then those would contain all nonvanishing
entries of the GMP matrix (i.e., it would also include the vector �pj). Moreover,
the positive entries are exactly at the upper right and the lower left corner of the
bigger block. Now placing the window of size (g + 1) × (g + 1) on the top of the
bigger block corresponds to the structure presented above. We will encounter in
Section 6 that in other settings it may be more natural to place the block at the
lower corner, and in this case the B blocks will have structure similar to (3.1).

Now the various notations for the off-diagonal blocks Aj , the vectors �pj which
determine them, and the coefficients βj defined in (1.8) are related as

βj = 〈ej(g+1)+k∞ , Ae(j+1)(g+1)+k∞〉 = (Aj)00 = (�pj)0.

The coefficients βj are a special case of the coefficients Λn defined for n = j(g+1)+k,
1 ≤ k ≤ g + 1 as

(3.2) Λn =

{
〈ej(g+1)+k, (ck − A)−1e(j+1)(g+1)+k〉 k 
= k∞,

〈ej(g+1)+k, Ae(j+1)(g+1)+k〉 k = k∞.

Namely βj = Λj(g+1)+k∞ , and the coefficients Λj(g+1)+� for k 
= k∞ instead occur

as outermost diagonal coefficients for the GMP matrix (ck − A)−1. In our later
applications to the discriminant of A, both the coefficients of A and of its resolvents
will appear, so we will work with Λn throughout.

Next, we connect the coefficients (3.2) to the solutions of the L2-extremal prob-
lem (1.5).

Lemma 3.1. For all n,

κn

κn+g+1
= Λn.(3.3)

Proof. Let n = j(g + 1) + k. By self-adjointness,

Λn = 〈en, rk(A)en+g+1〉 = 〈rkτn, τn+g+1〉 = 〈κnrn+g+1 + h, τn+g+1〉
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for some h ∈ Ln+g. By orthogonality, 〈τn+g+1, h〉 = 0, so 〈τn+g+1, rn+g+1〉 =
1

κn+g+1
implies that

Λn = 〈τn+g+1, κnrn+g+1 + h〉 =
κn

κn+g+1
. �

We now adapt to GMP matrices ideas from the theory of regularity for Jacobi
matrices [22].

Lemma 3.2. Let A ∈ A(C). For all j ≥ 1, ‖�pj‖ ≤ ‖A‖.
Proof. Fix j ≥ 1 and denote n = j(g + 1) + k∞. For any � = 0, . . . , g,

(pj)� = 〈en−g−1+�, Aen〉 =

∫
τn−g−1+�(x)xτn(x)dμ(x).

Since the vectors τn−g−1+� are orthonormal, by the Bessel inequality,

‖�pj‖2 ≤
∫

|xτn(x)|2dμ(x) ≤ ‖A‖2

∫
|τn(x)|2dμ(x) = ‖A‖2

since ‖A‖ = supx∈supp μ|x|. �

Lemma 3.3. For z ∈ C \ R,

(3.4) lim inf
n→∞

1

n
log |τn(z)| > 0.

Proof. We adapt the proof of [22, Proposition 2.2]. It suffices to prove (3.4) along
the subsequences n(j) = j(g + 1) + k, j → ∞, for 1 ≤ k ≤ g + 1. Moreover, due to
R-preserving conformal invariance, it suffices to fix k and prove

(3.5) lim inf
j→∞

1

n(j)
log |τn(j)(z)| > 0

under the assumption that ck = ∞. This allows us to use the associated GMP
matrix A ∈ A(C).

Note that for any m, since {τ�}∞
�=0 is an orthonormal basis of L2(dμ),

∑

�

Am�τ�(z) =
∑

�

〈zτm(z), τ�(z)〉τ�(z) = zτm(z).

This equality holds in L2(dμ), but since all functions are rational, it also holds
pointwise. Thus, if we fix z ∈ C \ R, the sequence �ϕ = {τ�(z)}∞

�=0 is a formal
eigensolution for A at energy z, i.e. (A − z)�ϕ = 0 componentwise. Since A is
represented as a block tridiagonal matrix, let us also write �ϕ in a matching block
form, as �ϕ
 =

[
�u


0 �u

1 �u


2 . . .
]

where

�u

0 =

[
τ0(z) . . . τk−1(z)

]
, �u


j =
[
τn(j−1)−1(z) . . . τn(j)−1(z)

]
, j ≥ 1.

We also consider the projection of �ϕ onto the first j + 1 blocks,

�ϕ

j =

[
�u


0 . . . �u

j 0 . . .

]
,

and compute (A − z)�ϕj . By the block tridiagonal structure of A, for m < n(j − 1)
we have 〈em, (A − z)�ϕj〉 = 0. For 0 ≤ � ≤ g, we have

〈en(j−1)+�, (A − z)�ϕ〉 − 〈en(j−1)+�, (A − z)�ϕj〉 = (pj)�τn(j)(z)

so that 〈en(j−1)+�, (A − z)�ϕj〉 = −(pj)�τn(j)(z). Moreover,

〈en(j), (A − z)�ϕj〉 = 〈en(j), A�ϕj〉 = (�pj)
∗uj(z).
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For m > n(j), we again have 〈em, (A − z)�ϕj〉 = 0. In conclusion, (A − z)�ϕj has
only two nontrivial blocks,

((A − z)�ϕj)

 =

[
0 . . . 0 −(�pjτn(j)(z))
 ((�pj)

∗uj)

 0 . . .

]
.

In particular, we can compute

(3.6) 〈�ϕj , (A − z)�ϕj〉 = −�u∗
jτn(j)(z)�pj .

Since A is self-adjoint and �ϕj ∈ �2(N0), by a standard consequence of the spectral
theorem [29, Lemma 2.7.],

|Im z|‖�ϕj‖2 ≤ |〈�ϕj , (A − z)�ϕj〉|.

Using (3.6) and the Cauchy–Schwarz inequality gives

|Im z|
j∑

m=0

‖�um‖2 ≤ |τn(j)(z)|‖�pj‖‖�uj‖.

By Lemma 3.2, with C = |Im z|/‖A‖,

C

j∑

m=0

‖�um‖2 ≤ |τn(j)(z)|‖�uj‖.(3.7)

Applying the AM-GM inequality to the right-hand side of (3.7) gives

|τn(j)(z)|‖�uj(z)‖ ≤ 1

2

(
C‖�uj(z)‖2 + C−1|τn(j)(z)|2

)

which together with (3.7) implies

|τn(j)(z)|2 ≥ C2

j∑

m=0

‖�um‖2.(3.8)

Since |τn(j)(z)|2 ≤ ‖�uj+1‖2, this implies that

j+1∑

m=0

‖�um‖2 ≥
(
1 + C2

) j∑

m=0

‖�um‖2.

Since ‖�u0‖ ≥ |τ0(z)| = 1, this implies by induction that

j∑

m=0

‖�um‖2 ≥
(
1 + C2

)j
.

Combining this with (3.8) gives a lower bound on |τn(j)(z)| which implies (3.5). �

The estimates in the previous proof also lead to the following:

Corollary 3.4. For any z ∈ C \ R, the quantities

lim inf
j→∞

1

j(g + 1) + k
log |τj(g+1)+k(z)|, lim sup

j→∞

1

j(g + 1) + k
log |τj(g+1)+k(z)|

are independent of k ∈ {1, . . . , g + 1}.
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Proof. Assume j ≥ 1. For k − g − 1 ≤ � ≤ k − 1, the estimate (3.8) gives

|τj(g+1)+k(z)|2 ≥ C2‖�uj‖2 ≥ C2|τj(g+1)+�(z)|2

which implies

lim inf
j→∞

1

j(g + 1) + k
log |τj(g+1)+k(z)| ≥ lim inf

j→∞
1

j(g + 1) + �
log |τj(g+1)+�(z)|(3.9)

and

lim sup
j→∞

1

j(g + 1) + k
log |τj(g+1)+k(z)| ≥ lim sup

j→∞

1

j(g + 1) + �
log |τj(g+1)+�(z)|.

(3.10)

Clearly, the right-hand sides don’t change if � is shifted by g + 1, so (3.9), (3.10)
hold for all k, � ∈ {1, . . . , g + 1} with k 
= �. By symmetry, since the roles of k, �
can be switched, we conclude that equality holds in (3.9), (3.10). �

4. Growth rates of orthonormal rational functions

In this section, we will combine the positivity (3.4) with potential theory tech-
niques in order to study exponential growth rates of orthonormal rational functions.
Our main conclusions will be conformally invariant, but our proofs will use potential
theory arguments and objects such as the logarithmic potential of a finite measure
ν,

Φν(z) =

∫
log|z − x|dν(x),

which is well defined when supp ν does not contain ∞.

Theorem 4.1. Fix 1 ≤ k ≤ g + 1 and denote by I the connected component of
R \ supp μ containing ck. Suppose there is a subsequence n� = j�(g + 1) + k such
that w-lim�→∞ νn�

= ν and 1
n�

log κn�
→ α ∈ R ∪ {−∞, +∞} as � → ∞. Then

uniformly on compact subsets of (C \ R) ∪ (I \ {ck}), we have

h(z) := lim
�→∞

1

n�
log |τn�

(z)|.

The function h is determined by ν and α; in particular, if ck = ∞,

(4.1) h(z) = α + Φν(z) − 1

g + 1

g+1∑

m=1
m �=k

log |cm − z|.

Moreover,

(a) α = −∞ is impossible;
(b) If α = +∞, the limit is h = +∞;
(c) If α ∈ R, the limit h extends to a positive harmonic function on C \ (E ∪

{c1, . . . , cg+1}) such that

h(z) = − 1

g + 1
log|cm − z| + O(1), z → cm 
= ∞,(4.2)

h(z) =
1

g + 1
log|z| + O(1), z → cm = ∞.(4.3)
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Proof. By using R-preserving conformal invariance, we can assume without loss of
generality that ck = ∞. We will use the representation (2.3) of the subspace Ln.
For n = j(g + 1) + k, counting degrees of the poles leads to

τn =
Pn

Rn
, Rn(z) =

k−1∏

m=1

(cm − z)

g+1∏

m=1
m �=k

(cm − z)j ,

with deg Pn = n. This may not be the minimal representation of τn, but by the
proof of Lemma 2.2, the only possible cancellations are simple factors (cm − z) for
each m 
= k, so we get the minimal representation τn(z) = P (z)/Q(z) with

P (z) = κn

∏

w:τn(w)=0

(z − w), Q(z) =

g+1∏

m=1
m �=k

(cm − z)j+δm,j ,

where |δm,j | ≤ 1 for each j. All that matters is that δm,j/j → 0 as j → ∞.
It will be useful to turn this rational function representation into a kind of Riesz
representation,

(4.4) log|τn(z)| = log κn + n

∫
log|x − z|dνn(x) −

∑

1≤m≤g+1
m �=k

(j + δm,j) log|cm − z|.

Since ck = ∞, note that K = R\ I is a compact subset of R. Denote Ω = C\K.
For any z ∈ Ω, the map x �→ log |x − z| is continuous on K, so Φνn�

(z) → Φν(z) as

� → ∞. In fact, convergence is uniform on compact subsets of Ω: since supp(νn�
) ⊂

K and νn�
(K) ≤ 1 for all �, the estimate

log

∣∣∣∣
x − z1

x − z2

∣∣∣∣ ≤ log

(
1 +

|z1 − z2|
dist(z2, K)

)
≤ |z1 − z2|

dist(z2, K)
, z1, z2 ∈ Ω,

implies uniform equicontinuity of the potentials Φn�
on compact subsets of Ω, and

the Arzelà–Ascoli theorem implies uniform convergence on compacts.
Note that (b) follows from (4.1). By Corollary 2.3, supp ν ⊂ E and Φν(z)

is harmonic on C \ E, so the right hand side extends to a harmonic function on
C \ (E ∪ {c1, . . . , cg+1}) and we denote this extension also by h. By Lemma 3.3, h
is positive on C+ ∪ C−, so α 
= −∞; moreover, by the mean value property, h is
positive on C \ (E ∪ {c1, . . . , cg+1}).

The remaining asymptotic properties follow from (4.1). Under the assumption
ck = ∞, supp ν is a compact subset of R, and Φν(z) = log |z| + O(1), z → ∞.
It then follows that h(z) = 1

g+1 log |z| + O(1) as z → ∞. Of course, h(z) =

− 1
g+1 log |z − cm| + O(1) near each cm 
= ck. �

Theorem 4.1 motivates interest in positive harmonic functions on
C\(E∪{c1, . . . , cg+1}). If E is polar, by Myrberg’s theorem [2, Theorem 5.3.8], any
such function is constant. If E is not polar, knowing the asymptotic behavior of h
at the poles, positivity of h improves to the following lower bound on h. Lemma 4.2
reflects a standard minimality property of the Green function [11, Section VII.10].

Lemma 4.2. Assume that E is a nonpolar closed subset of R. Let h be a positive
superharmonic function on C \ (E∪{c1, . . . , cg+1}). Suppose h(z)+ 1

g+1 log |z − ck|
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has an existent limit at ck for each finite ck, and h(z) − 1
g+1 log |z| has an existent

limit at ∞ if one of the ck = ∞. Then

h(z) ≥ GE(z,C)(4.5)

for z ∈ C \ E. For 1 ≤ k ≤ g + 1, define

αk =

{
limz→ck

(h(z) + 1
g+1 log |z − ck|), ck 
= ∞,

limz→∞(h(z) − 1
g+1 log |z|), ck = ∞.

Then

αk ≥ log λk

g + 1
.(4.6)

Proof. We will use a stronger, q.e. version of the maximum principle [20, Thm
3.6.9]. Define

h̃(z) := GE(z,C) − h(z),

which is bounded at ck for 1 ≤ k ≤ g +1 and so extends to a subharmonic function
on C \ E. Since GE vanishes q.e. on E, we have for q.e. t ∈ E,

lim sup
z→t

h̃(z) = − lim inf
z→t

h(z) ≤ 0.

Now we show h̃ is bounded above on C\E. Let U be a union of small neighborhoods
containing the points ck in C \E. By the definition of the Green function, GE(z,C)
defines a harmonic and bounded function on C \ (E ∪ U). That is, there exists M
such that for all z ∈ C \ (U ∪ E) we have

GE(z,C) ≤ M.

Since h ≥ 0, it follows on C \ (U ∪ E) that

h̃(z) = GE(z,C) − h(z) ≤ GE(z,C) ≤ M.

On the other hand, by properties of the Green functions we have

log λk

g + 1
=

{
limz→ck

(GE(z,C) + 1
g+1 log |z − ck|), ck 
= ∞,

limz→∞(GE(z,C) − 1
g+1 log |z|), ck = ∞.

Then, by assumption, for 1 ≤ k ≤ g + 1, h̃(z) = log λk

g+1 − αk + o(1) as z → ck and,

in particular, the difference is bounded in a small neighborhood of ck. Thus, h̃ is
bounded above on C \ E.

So, by the maximum principle h̃ ≤ 0 =⇒ GE(z,C) ≤ h(z) on C \ E. Since

0 ≥ limz→ck
h̃(z) = log λk

g+1 − αk, we have (4.6). �

Lemma 4.3. Under the same assumptions as Lemma 4.2, the following are equiv-
alent:

(i) Equality in (4.6) for all k with 1 ≤ k ≤ g + 1
(ii) Equality in (4.6) for a single k with 1 ≤ k ≤ g + 1
(iii) Equality holds in (4.5)

Proof. (i) =⇒ (ii) is trivial. Suppose then (ii); with the notation of Lemma 4.2,

by assumption, h̃(ck) = 0 and h̃ achieves a global maximum. By the maximum

principle for subharmonic functions [20, Theorem 2.3.1], h̃ ≡ 0 on C \ E. Finally, if

(iii) holds, then evaluating h̃(ck) for each 1 ≤ k ≤ g + 1 yields (i). �
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We will now prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Using conformal invariance, we take ck = ∞. Fix z ∈ C \ R
and select a sequence (n�)

∞
�=1 such that

lim inf
n→∞

1

n
log |τn(z)| = lim

�→∞
1

n�
log |τn�

(z)|.

By precompactness of the (νn), we may pass to a further subsequence, which we
denote again by (n�)

∞
�=1, so that w-lim�→∞ νn�

= ν and 1
n�

log κn�
→ α for some ν

and α. Then for h as in Theorem 4.1,

lim
�→∞

1

n�
log |τn�

(z)| = h(z),

on C \ R. If α = +∞, then there is nothing to show. Suppose α < ∞. If E is not
polar we apply (a) of Theorem 4.1 to find α ∈ R, and we may use (c) of the same
theorem and Lemma 4.2 to conclude.

If instead E is polar, by Myrberg’s theorem, h is constant on C\(E∪{c1, . . . , cg+1}).
Computing the limit at ck we see h ≡ +∞. In particular, lim infn→∞

1
n log |τn(z)| =

+∞ for z ∈ C \ R. �

Proof of Theorem 1.3. Fix 1 ≤ k ≤ g+1 and assume again by conformal invariance
that ck = ∞. Using precompactness of the measures (νn), we find a subsequence
n� = j�(g + 1) + k with

lim
�→∞

1

n�
log κn�

= lim inf
j→∞

1

n(j)
log κn(j) =: α

and w-lim�→∞ νn�
= ν. If α = +∞, we are done. Suppose then α < ∞, then

we have by Theorem 4.1(a), α ∈ R. Furthermore, if E is nonpolar, by (c) and
Lemma 4.2, h(z) ≥ GE(z,C) on C \ E. In particular, by the representation (4.1) we
see that α = limz→∞(h(z) − 1

g+1 log |z|), and so (4.6) yields the desired inequality.

If instead E is polar, by Theorem 1.2, for each z ∈ C \ R,

h(z) = lim
�→∞

1

n�
log |τn�

| ≥ lim inf
n→∞

1

n
log |τn(z)| = +∞,

and so by Theorem 4.1(b), α = +∞. �

5. Regularity

We will begin by proving a version of Theorem 1.4 for a fixed k.

Lemma 5.1. Fix k ∈ {1, . . . , g + 1}. Along the subsequence n(j) = j(g + 1) + k,
the following are equivalent:

(i) limj→∞ κ
1/n(j)
n(j) = λ

1/(g+1)
k ;

(ii) For q.e. z ∈ E, we have lim supj→∞ |τn(j)(z)|1/n(j) ≤ 1;

(iii) For some z ∈ C+, lim supj→∞ |τn(j)(z)|1/n(j) ≤ eGE(z,C);

(iv) For all z ∈ C, lim supj→∞ |τn(j)(z)|1/n(j) ≤ eGE(z,C);

(v) Uniformly on compact subsets of C \ R, limj→∞ |τn(j)(z)|1/n(j) = eGE(z,C).

Proof. Using conformal invariance, we will assume throughout the proof that ck =
∞. First, suppose that E is polar. In this case (ii) is vacuous, and since GE ≡ +∞,
(iii) and (iv) are trivially true. Since λk = +∞, (i) follows from Theorem 1.3.
As in the proof of Theorem 4.1, weak convergence of measures implies uniform
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on compacts convergence of their potentials. Thus, since νn are a precompact
family, so are Φνn

. Thus, the convergence limj→∞ 1
n(j) log κn(j) = +∞ implies that

limj→∞
1

n(j) log|τn(j)(z)| = +∞ uniformly on compact subsets of C\R, so (v) holds.

For the remainder of the proof, we will assume E is not polar. Moreover, we
will repeatedly use the fact that if any subsequence of a sequence in a topological
space has a further subsequence which converges to a limit, then the sequence itself
converges to this limit. In particular, when concluding (v), we apply this fact in
the Fréchet space of harmonic functions on C \ R with the topology of uniform
convergence on compact sets.

(iii) =⇒ (v): Given a subsequence of n(j) = j(g + 1) + k, using precompact-
ness of the measures νn, we pass to a further subsequence n� = j�(g + 1) + k
with w-lim�→∞ νn�

= ν and lim�→∞ 1
n�

log κn�
=: α, with α real or infinite. By

Theorem 4.1, uniformly on compact subsets of C \ R,

h(z) = lim
�→∞

1

n�
log |τn�

(z)|

with h given by (4.1). Using the assumption, for some z0 ∈ C+, we have

h(z0) ≤ lim sup
j→∞

1

n(j)
log |τn(j)(z0)| < ∞.

So, by Theorem 4.1, α ∈ R and h has a harmonic extension to C\(E∪{c1, . . . , cg+1}).
Furthermore, by Lemma 4.2, h ≥ GE. By assumption, we have the opposite inequal-
ity at z0 ∈ C+, and so, by the maximum principle for harmonic functions, h = GE

on C \ (E ∪ {c1, . . . , cg+1}), and in particular on C \ R. Thus, we have (v).
(v) =⇒ (iv): For z ∈ {c1, . . . , cg+1}, GE(z,C) = +∞ and there is nothing

to show. Fix z ∈ C \ {c1, . . . , cg+1} and let n� = j�(g + 1) + k be a subsequence
with lim�→∞ 1

n�
log |τn�

(z)| = lim supj→∞
1

n(j) log |τn(j)(z)|. By passing to a further

subsequence, we may assume w-lim�→∞ νn�
= ν, and lim�→∞ 1

n�
log κn�

=: α where

α is real or infinite. By the assumption, we have h = lim�→∞ 1
n�

log |τn�
| = GE on

C \ R. So, by (a) and (b), α ∈ R and h extends to a harmonic function on C \ (E ∪
{c1, . . . , cg+1}). By the representation (4.1), we may extend h subharmonically to

C \ {c1, . . . , cg+1}. On this set, GE is also subharmonic, so, by the weak identity

principle [20, Theorem 2.7.5], h = GE on C \ {c1, . . . , cg+1}. Thus, by the principle
of descent [27, A.III], we have

lim
�→∞

1

n�
log |τn�

(z)| ≤ h(z) = GE(z,C)(5.1)

and (iv) follows.
(v) =⇒ (i): Given a subsequence of n(j) = j(g+1)+k, we use precompactness of

the νn to pass to a further subsequence n� = j�(g+1)+k with lim�→∞ 1
n�

log κn�
=:

α ∈ R ∪ {−∞, +∞} and w-lim�→∞ νn�
= ν. Then in the notation of Theorem 4.1

and by assumption, for a z ∈ C \ R
lim

�→∞
log |τn�

(z)| = h(z) = GE(z,C).

So by Lemma 4.3, α = log λk

g+1 . Thus, λ
1/(g+1)
k is the only accumulation point of

κ
1/n(j)
n(j) in R ∪ {−∞, +∞} and we have (i).

(i) =⇒ (v): As before, we fix a subsequence of n(j) = j(g+1)+k and use precom-
pactness to pass to a further subsequence n� = j�(g+1)+k with w-lim�→∞ νn�

= ν.
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Then, by Theorem 4.1 and in the notation introduced there, uniformly on compact
subsets of C \ R,

lim
�→∞

1

n�
log |τn�

(z)| = h(z),

where h is given by (4.1) with α = log λk

g+1 . Thus, by Lemma 4.3(ii), h(z) = GE(z,C)

on C \ R. Since the initial subsequence was arbitrary, we have (v).
(iv) =⇒ (ii): Recalling that the Green function vanishes q.e. on E, the claim

follows.
(ii) =⇒ (v): Fixing a subsequence of n(j), we again use precompactness to

select a further subsequence n� = j�(g + 1) + k such that w-lim�→∞ νn�
= ν and

lim�→∞ 1
n�

log κn�
=: α, α ∈ R∪{−∞, +∞}. By the upper envelope theorem, there

is a polar set X1 ⊂ C such that on C \ X1, lim sup�→∞ Φνn�
= Φν . Now, we let

X2 := {t ∈ E : lim supn→∞
1
n log |τn(t)| > 0}, which is polar by assumption, and

X3 := {z ∈ C : Φ∞(z) = −∞}, which is polar by [20, Theorem 3.5.1]. Then, for a
t ∈ E \ (X1 ∪ X2 ∪ X3), we have

α ≤ lim sup
n→∞

1

n
log |τn(t)| − Φν(t) +

1

g + 1

g+1∑

m=1
m �=k

log |cm − t| < ∞.

So α ∈ R by Theorem 4.1(a). Thus, by (c) of the same theorem, uniformly on
compact subsets of C \ R

h(z) = lim
�→∞

1

n�
log |τn�

(z)|

and h extends to a positive harmonic function on C \ (E ∪ {c1, . . . , cg+1}) with
logarithmic poles at each of the cm. So, h − GE extends to a harmonic function on
C \ E, and h − GE ≥ 0 there by Lemma 4.2. We now show that in fact h = GE using
the stronger, q.e. maximum principle.

We use the equality in (4.1) to extend h to a subharmonic function on C \
{c1, . . . , cg+1}. By the upper envelope theorem and the assumption again, for
t ∈ E \ (X1 ∪ X2)

h(t) = lim sup
�→∞

1

n�
log |τn�

(t)| ≤ 0.

Then, for these t, since GE is positive, we have

lim sup
z→t

z∈C\E

(h(z) − GE(z,C)) ≤ lim sup
z→t

z∈C\E

h(z) ≤ h(t) ≤ 0

by upper semicontinuity. So, lim sup z→t
z∈C\E

(h(z) − GE(z,C)) ≤ 0 for q.e. t ∈ E.

Since h is upper semicontinuous on the compact set E, there is an M so that
supt∈E h(t) ≤ M . As in the above, now for any t ∈ E, we have

lim sup
z→t

z∈C\E

(h(z) − GE(z,C)) ≤ lim sup
z→t

z∈C\E

h(z) ≤ h(t) ≤ M.

So, there is a neighborhood U of E with supz∈U∩(C\E)(h − GE) ≤ M + 1. Since the

difference is harmonic on C \ U , we conclude that supz∈C\E(h(z) − GE(z,C)) < ∞.

Thus, by the maximum principle and the reverse inequality, h = GE on C \E. Since
the first sequence was arbitrary, we have (v).

Since the implication (iv) =⇒ (iii) is clear, we may conclude. �
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We now put the subsequences together and use Corollary 3.4 to show that regular
behavior occurs for one k if and only if it happens for all.

Proof of Theorem 1.4. Applying Lemma 5.1 for all k implies equivalence of condi-
tions (ii), (iv), (v), (vi), (vii) from Theorem 1.4. By Corollary 3.4, for some z ∈ C+,
the condition

lim sup
j→∞

1

j(g + 1) + k
log|τj(g+1)+k(z)| ≤ GE(z,C)

holds for one value of k if and only if it holds for all. Due to Lemma 5.1, this
immediately implies equivalence of conditions (i) and (iii) from Theorem 1.4. It
remains to prove equivalence of (ii), (iii).

(ii) =⇒ (iii): For n ∈ N and 1 ≤ k ≤ g + 1, denote by N(n, k) the integer
such that n + 1 ≤ N(n, k) ≤ n + g + 1 and N(n, k) − k is divisible by g + 1. Then

N(n, k)/n → 1 as n → ∞ so (ii) implies limn→∞ κ
1/n
N(n,k) = λ

1/(g+1)
k . Taking the

product over k = 1, . . . , g + 1 gives (iii).
(iii) =⇒ (ii): Similarly to the above, Theorem 1.3 shows that for all k,

(5.2) lim inf
n→∞

κ
1/n
N(n,k) ≥ λ

1/(g+1)
k .

Thus, if (ii) was false, this would mean that for some k = m, lim supn→∞ κ
1/n
N(n,m) >

λ
1/(g+1)
m . Taking products over k, we would have

lim sup
n→∞

(
g+1∏

k=1

κN(n,k)

)1/n

≥ lim sup
n→∞

κ
1/n
N(n,m) lim inf

n→∞

( ∏

1≤k≤g+1
k �=m

κN(n,k)

)1/n

>

(
g+1∏

k=1

λk

)1/(g+1)

(the last step again uses (5.2) for all k 
= m). This would contradict (iii), so the
proof is complete. �

We now prove a seemingly special case of Corollary 1.7.

Proposition 5.2. Assume that the sequence C contains ∞. Then μ is Stahl–Totik
regular if and only if it is C-regular.

Proof. Let us assume that μ is C-regular and let pn denote the orthonormal poly-
nomial with respect to μ. Fix z ∈ C. Since ∞ is in C, pn ∈ Ln(g+1), so the
orthonormal polynomials can be expressed on the basis of orthonormal rational
functions as

pn(z) =

n(g+1)∑

m=0

cmτm(z),

n(g+1)∑

m=0

|cm|2 = 1.

Thus, in particular, |c�| ≤ 1 and we get

(5.3) |pn(z)| ≤ (1 + n(g + 1)) sup
0≤m≤n(g+1)

|τm(z)|.

By Theorem 1.4, for q.e. z ∈ E,

(5.4) lim sup
�→∞

1

�
log|τ�(z)| ≤ 0.
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Thus, for q.e. z ∈ E, (5.3) implies

(5.5) lim sup
n→∞

1

n
log |pn(z)| ≤ 0.

Thus, μ is Stahl–Totik regular.
Conversely, assume that μ is Stahl–Totik regular. For n = j(g + 1) + k, the

polynomial Rn is a divisor of Rj+1
g+1, so we can write τn = Pn

Rj+1
g+1

where deg Pn ≤ n+g.

For any ε > 0 there exists a polynomial Qε such that 1 − ε ≤ QεRg+1 ≤ 1 + ε on E.
Thus,

(5.6) |τn(z)| ≤ (1 − ε)−j−1|Pn(z)Qj+1
ε (z)|

and ‖PnQj+1
ε ‖ ≤ (1 + ε)j+1 since τn is normalized. Since PnQj+1

ε is a polynomial
of degree at most n + g + (j + 1) deg Qε, similarly to the above, representing it in
the basis of polynomials shows
(5.7)
|Pn(z)Qj+1

ε (z)| ≤ (1 + ε)j+1(n + g + 1 + (j + 1) deg Qε) sup
0≤m≤n+g+(j+1)deg Qε

|pn(z)|.

Since n + g + (j + 1) deg Qε = O(n) as n → ∞, the supremum in (5.7) grows
subexponentially whenever (5.5) holds. By (5.6), this implies

lim sup
n→∞

1

n
log|τn(z)| ≤ 1

g + 1
log

(
1 + ε

1 − ε

)
.

Since ε > 0 is arbitrary, we conclude that (5.5) implies (5.4), so (5.4) holds q.e. on
E. �

From this seemingly special case, Theorem 1.6 and Corollary 1.7 follow easily:

Proof of Theorem 1.6. By applying a conformal transformation, the special case
shows that μ is C1-regular if and only if it is (ck)-regular for any single ck in C1.
By applying this twice, we conclude that if C1, C2 have a common element, then
μ is C1-regular if and only if it is C2-regular.

By applying that conclusion twice, we will finish the proof. Namely, for arbitrary
C1, C2, choose a sequence C3 which has common elements with both C1 and C2.
Then μ is C1-regular if and only if it is C3-regular if and only if it is C2-regular. �

Proof of Corollary 1.7. The result follows by taking C2 = (∞) in Theorem 1.6. �

Proof of Theorem 1.1. By Lemma 2.1, f∗μ is Stahl–Totik regular if and only if μ is
(f−1(∞))-regular, and by Corollary 1.7, this is equivalent to Stahl–Totik regularity
of μ. �

Proof of Theorem 1.8. (a) We note that by Corollary 1.7 we may use Theorem 1.4.
Fix 1 ≤ k ≤ g + 1, and use conformal invariance to assume ck = ∞. Given a
subsequence of n(j) = j(g + 1) + k, we use precompactness to pass to a further
subsequence n� = j�(g + 1) + k with w-lim�→∞ νn�

= ν. We write

GE(z,C) = ΦρE,C
(z) +

1

g + 1
log λk − 1

g + 1

g+1∑

m=1
m �=k

log |z − cm|(5.8)

which we will use to show Φν = ΦρE,C
. By (ii), we may apply Theorem 4.1 with

α = 1
g+1 log λk. Then, (vii) yields h = GE off the real line, and thus the equality
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between the representations (4.1) and (5.8) gives Φν(z) = ΦρE,C
(z) on C \ R. By

the weak identity principle, this equality extends to C. Applying the distributional
Laplacian to both sides gives ν = ρE,C. Thus, w-limn→∞ νn = ρE,C.

(b) The main ingredient is a variant of Schnol’s theorem; for any n,
∫

|τn|2 dμ = 1,
so

∞∑

n=1

n−2

∫
|τn|2 dμ < ∞.

By Tonelli’s theorem, it follows that
∑∞

n=1 n−2|τn|2 < ∞ μ-a.e., so there exists a
Borel set B ⊂ C with μ(C \ B) = 0 such that

(5.9) lim sup
n→∞

1

n
log|τn(z)| ≤ 0, ∀z ∈ B.

Suppose μ is not regular. Then, by Theorem 1.4(ii), there is a 1 ≤ k ≤ g + 1 with

lim sup
j→∞

1

n(j)
log κn(j) >

1

g + 1
log λk.

Using conformal invariance, we may assume ck = ∞, and we can pass to a subse-
quence n� = j�(g + 1) + k such that α := lim�→∞ 1

n�
log κn�

> 1
g+1 log λk, where

α ∈ R ∪ {+∞} by Theorem 4.1(a). Since w-limn→∞ νn = ρE,C, by comparing (4.1)
and (5.8), we have for z ∈ C \ R,

(5.10) lim
�→∞

1

n�
log|τn�

(z)| = GE(z,C) + d,

where d = α − log λk

g+1 > 0. By the upper envelope theorem applied to the sequence

{νn�
}�∈N, there exists a polar set X such that (5.10) also holds for all z ∈ C \ X.

Moreover, since GE(z,C) ≥ 0 for all z ∈ C, we conclude that

lim sup
n→∞

1

n
log|τn(z)| ≥ lim

�→∞
1

n�
log|τn�

(z)| ≥ d, ∀z ∈ C \ X.

Comparing with (5.9) shows that B ⊂ X, so μ is supported on the polar set X. �

Proof of Theorem 1.9. Defining n(j) = j(g + 1) + k∞ and using Lemma 3.1 to
compute a telescoping product,

(5.11)

(
j∏

�=1

β�

)1/j

=

(
j∏

�=1

κn(�)

κn(�+1)

)1/j

= κ
1/j
n(1)κ

−1/j
n(j+1).

The first term on the right-hand side is independent of j, so κ
1/j
n(1) → 1 as j → ∞.

For the second factor, using Theorem 1.3 we compute

lim inf
j→∞

κ
1/j
n(j+1) ≥ λk∞

and we have the upper bound (1.9) for the lim sup of (5.11). Similarly, using the
criterion Theorem 1.4(ii), it follows from (5.11) that μ is C-regular if and only if
(1.10) holds. �
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6. GMP matrices 2

The proof of Theorem 1.10 will rely heavily on the results of [32]. In this section
we will recall some properties of GMP matrices from [32] which we will use in the
proof of Theorem 1.10. However, in order to justify the use of those constructions,
we need to add some explanation of the structure of GMP matrices. This technical
explanation is necessary in order to understand the action on Jacobi matrices caused
by a single coefficient stripping step on GMP matrices; since such a step changes the
location of ∞ in the sequence of poles, it links our GMP matrices which naturally
arise from ORF expansions, and those in [32], which naturally arise from functional
models of reflectionless operators. This link will allow us to use parts of the analysis
of [32].

As noted in the beginning of Section 3, GMP matrices split up into blocks due
to the appearance of some ck∞ = ∞. However, there is a choice whether to place
the “window” of block size (g + 1) × (g + 1) so that ck∞ is the last element of
the previous block, or the first element of the next block. In this paper, the latter
choice has been more natural (i.e., to split before ∞), because it corresponds to the
choice τ0 = 1 in the rational function construction. From now on, we will call this
the RF structure. On the other hand, in [32] the first choice was more natural (i.e.,
to split after ∞) for the functional model construction, and we will call this the FM
structure. Alternatively, recall that we discussed in Remark 1 that one could view
the GMP structure also as overlapping (g + 2) × (g + 2) blocks. The RF-structure
then corresponds to placing the (g + 1) × (g + 1) B block at the upper left corner
of the bigger block, whereas the FM structure corresponds to placing the B blocks
at the lower right corner. This is shown in the figure below, where the blue lines
indicate a B block corresponding to the RF structure and the red lines a B block
corresponding to the FM structure. Moreover, p̃0 denotes the positive entry on the
outermost diagonal:

. . .
∞ p̃0

p̃0 ∞
. . .

⎡
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⎣

⎡
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⎣

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The two structures can be translated into each other, by means of the formulas
(6.1). Moreover, we will show below that they are also linked by a coefficient
stripping formula.

For the reader’s convenience, we recall the FM structure of GMP matrices as
introduced in [32]. Although the RF and FM structures are just a different inter-
pretation of the same object, namely a GMP matrix, it will be convenient to have
a separate notation. For a GMP matrix written in the FM structure we will use
A, respectively for its blocks Ak, Bk, and we will use Ã, Ãk, B̃k, for GMP matrices
written in the RF structure. Note that this is a change from the notation used in
previous sections.
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Fix a finite sequence C = (c1, . . . , cg) and recall that X− denotes the upper
triangular part of a matrix X (excluding the diagonal), and X+ the lower trian-
gular part (including the diagonal). Then we say that A acting on �2(Z) is GMP
structured, and denote it by A ∈ A, if it is a (g + 1)-block Jacobi matrix

A =

⎡
⎢⎢⎢⎢⎣

. . .
. . .

. . .

A∗
−1 B−1 A0

A∗
0 B0 A1

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎦

such that

Aj = δg�pj
∗, Bj = (�qj�pj

∗)− + (�pj�qj
∗)+ + Ĉ, �pj , �qj ∈ Rg+1,

and

Ĉ =

⎡
⎢⎢⎢⎣

c1

. . .

cg

0

⎤
⎥⎥⎥⎦ , �pj =

⎡
⎢⎢⎣

p
(j)
0
...

p
(j)
g

⎤
⎥⎥⎦ , �qj =

⎡
⎢⎢⎣

q
(j)
0
...

q
(j)
g

⎤
⎥⎥⎦ , p(j)

g > 0.

We then say an operator A ∈ A is a two-sided GMP matrix if the resolvents
(c� − A)−1 exist for all 1 ≤ � ≤ g and S−�(c� − A)−1S� ∈ A. In this case we
write A ∈ GMP(C). Again we call the generating coefficients {�pj , �qj}j∈Z the GMP
coefficients of A.

We encounter several differences compared to the RF structure presented in
Section 3. First of all the 0 in Ĉ is now in the last, rather than in the first,
position. Moreover, in the definition of Aj , the vector �pj is now a row vector in
the last row, rather than a column vector in the first column. This is exactly due
to shifting the position of ∞ as described above. Extending the structure of GMP
matrices to two-sided operators on �2(Z), it is not hard to see that the RF and the
FM structures can be translated into each other, simply by shifting the window of
size (g + 1) × (g + 1) by one. In this process the role of pj and qj changes, that is,
for 1 ≤ k ≤ g we have

p̃
(j)
k = q

(j)
k−1p

(j)
g , q̃

(j)
k =

p
(j)
k−1

p
(j)
g

.(6.1)

More importantly for us is that the positive entries are the same, i.e.,

p(j)
g = p̃

(j)
0 .

Following [32], we explain how to associate to a given GMP matrix a Jacobi matrix.
Let ej denote the standard basis vectors in �2(Z); recall that {e−1, e0} forms a
spectral basis for two-sided Jacobi matrices in the sense that {Jnej | n ∈ N0, j =
−1, 0} is dense in �2(Z). Define the matrix resolvent function by

RJ (z) =

[
〈(J − z)−1e−1, e−1〉 〈(J − z)−1e0, e−1〉
〈(J − z)−1e−1, e0〉 〈(J − z)−1e0, e0〉

]
.

Let �2+ = �2(N0) and �2− = �2(Z)��2+ and Π± denote the projection onto �2±. Define
J± = Π±JΠ± and define the half-line resolvent functions by

mJ
+(z) = 〈(J+ − z)−1e0, e0〉, mJ

−(z) = 〈(J− − z)−1e−1, e−1〉.
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Then, essentially due to the structure

J =

[
J− 0
0 J+

]
+ a0(〈·, e−1〉e0 + 〈·, e0〉e−1),

one can see that

RJ (z) =

[
mJ

−(z)−1 a0

a0 mJ
+(z)−1

]−1

;(6.2)

cf. [9, pg 758].
For GMP matrices, we need to modify the spectral basis. Define

ẽ0 =
1

a0
Π+Ae−1, a0 = ‖Π+Ae−1‖,(6.3)

with the natural embedding into �2(Z). Note that

a0ẽ
ᵀ
0 =

[
. . . 0 | p

(0)
0 p

(0)
1 . . . p

(0)
g 0 . . .

]
.

Then {e−1, ẽ0} form a spectral basis for A and similarly as for Jacobi matrices we
have

A =

[
A− 0
0 A+

]
+ a0(〈·, e−1〉ẽ0 + 〈·, ẽ0〉e−1).

This allows us to define

RA(z) =

[
〈(A − z)−1e−1, e−1〉 〈(A − z)−1ẽ0, e−1〉
〈(A − z)−1e−1, ẽ0〉 〈(A − z)−1ẽ0, ẽ0〉

]
,

and

mA
−(z) = 〈(A− − z)−1e−1, e−1〉, mA

+(z) = 〈(A+ − z)−1ẽ0, ẽ0〉(6.4)

and find similar to the Jacobi case that

RA(z) =

[
mA

−(z)−1 a0

a0 mA
+(z)−1

]−1

.

For a given GMP matrix A, the associated Jacobi matrix is simply defined by
setting the resolvent functions to be equal, i.e.,

RJ (z) = RA(z).(6.5)

Note that this defines J uniquely. Due to the common vector e−1, it follows that

b−1 = 〈Je−1, e−1〉 = 〈Ae−1, e−1〉 = p(−1)
g q(−1)

g ,(6.6)

a0 = ‖Π+Je−1‖ = ‖Π+Ae−1‖ = ‖�p0‖,

which explains in hindsight the definition of a0 in (6.3).
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6.1. Shifts on GMP matrices. For a vector x ∈ �2(Z), let | denote the splitting
of �2− and �2+, i.e., we write xᵀ =

[
. . . x−1|x0 . . .

]
. We chose the vector of poles in

the following way
[
. . . ∞|c1 . . . cg ∞ c1 . . .

]
. That is for A+ = Π+AΠ+

the first pole is c1 ∈ R. However, if we consider Ã+ = Π+SAS−1Π+, where

Sek = ek+1 denotes the right shift, then the first pole of Ã+ is ∞.

Ã+ =

∞
c1

A+

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

.

The resolvent functions of A+ and Ã+ are related by a coefficient stripping
formula:

Lemma 6.1. Let A ∈ GMP(C), A+ = Π+AΠ+, ẽ0, a0, b−1 as in (6.3), (6.6) and

define Ã+ = Π+SAS−1Π+. Then the resolvent functions

m+(z) = 〈(A+ − z)−1ẽ0, ẽ0〉, m̃+(z) = 〈(Ã+ − z)−1e0, e0〉
are related by the coefficient stripping formula

m̃+(z) =
1

b−1 − z − a2
0m+(z)

.(6.7)

Proof. Recall that S+ denotes the right shift on �2+ and define

f0 = S+ẽ0 =
1

a0

[
0 p

(0)
0 p

(0)
1 . . . p

(0)
g 0 . . .

]
.

Then we have

Ã+ =

[
b−1 0
0 A+

]
+ a0(〈·, e0〉f0 + 〈·, f0〉e0).

Then as for Jacobi matrices this implies (6.7); cf. [24, Theorem 3.2.4]. �

Lemma 6.1 has a very natural interpretation. As we discussed above, GMP
matrices split into blocks where ck∞ = ∞ and then there is some choice if we place
∞ as the last or the first element of a block. However, this discussion is irrelevant
for Jacobi matrices, where all ck ≡ ∞. Thus, if we associate to A a Jacobi matrix
J by (6.5) and define J+ = Π+JΠ+ and J̃+ = Π+SJS−1Π+ and the associated
m+, m̃+, then (6.7) becomes the standard coefficient stripping for Jacobi matrices.

There is another natural shift on GMP matrices. Namely, since the shift A(1) =
S−(g+1)AS(g+1) preserves the GMP structure, one can describe how the resolvent
functions of A and A(1) are related. This will be done by so-called elementary
Blaschke-Potapov factors of the third kind with poles at c1, . . . , cg, ∞; cf. [1, 19].
In the following it will be convenient to use the notation

p = (p, q), �p = (�p, �q).

Definition 6.2. For p, q, c ∈ R
(6.8)

a(z, c;p) = I − 1

c − z

[
p
q

] [
p q

]
j = exp

(
− 1

c − z

[
p
q

] [
p q

]
j

)
, j =

[
0 −1
1 0

]
,
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represents the so-called Blaschke-Potapov factor of the third kind with a real pole
c. If c = ∞ it is of the form

(6.9) a(z;p) = a(z, ∞;p) =

[
0 −p
1
p

z−pq
p

]
.

Define the matrix function

A(z, �p) =

[
A11 A12

A21 A22

]
(z, �p) = a(z, c1;p0) . . . a(z, cg;pg−1)a(z;pg).(6.10)

The important role of the function A(z, �p) will become clear by Theorem 6.3.

Theorem 6.3 ([32, Theorem 2.13 and Theorem 2.15]). Let A ∈ GMP(C), A(1) =

S−(g+1)AS(g+1) and A+ and A
(1)
+ the projections onto �2+. Let mA

+ and mA(1)

+ be

the resolvent functions defined by (6.4). Let a2
0 = ‖�p0‖2, (a

(1)
0 )2 = ‖�p

(1)
0 ‖2. Then

a2
0m

A
+(z) =

A11(z, �p0)((a
(1)
0 )2mA(1)

+ (z)) + A12(z, �p0)

A21(z, �p0)((a
(1)
0 )2mA(1)

+ (z)) + A22(z, �p0)
.(6.11)

6.2. Periodic GMP matrices. We call a two-sided GMP matrix 1-periodic or

simply periodic if Sg+1AS−(g+1) = A. In this case mA(1)

+ = mA
+ and (6.11) is a

quadratic equation for mA
+. This allows to describe the spectrum of A in terms of

the function A(z).

Theorem 6.4 ([12, Theorem 1.8]). Let A = A(�p) ∈ GMP(C) be a periodic GMP
matrix and A(z, �p) be as in (6.10) and define the discriminant by

Δ(z) = trA(z, �p).

Then the spectrum of A is a finite union of intervals, it is purely absolutely contin-
uous and of multiplicity 2 and it is given by

σ(A) = Δ−1([−2, 2]) = {z ∈ C| Δ(z) ∈ [−2, 2]}.

The inverse problem can also be answered explicitly. Namely, given a finite
union of intervals E, are there periodic GMP matrices with the given spectrum and
if so can one describe the set of all such matrices? Crucially, the answer to both
questions is positive for the special choice C = CE, where CE denotes the zeros of
the Ahlfors function associated to E. We define the isospectral torus of periodic
two-sided GMP matrices by

TE(CE) = {Å ∈ GMP(CE), Å is periodic and σ(Å) = E}.

Henceforth, we will use Å for elements from TE(CE). We point out that for arbitrary
finite gap sets, the isospectral torus of Jacobi matrices usually consists of almost
periodic operators, whereas for GMP matrices we can always work with periodic
operators. This also makes it possible to characterize the isospectral torus by
a magic formula for GMP matrices. Moreover, this then can be used to describe
TE(CE) also as an algebraic manifold. Recall that Λn denotes the outermost positive
entry of the resolvents (c�−A)−1. That is if A ∈ GMP(C) is a periodic GMP matrix
let

Λ�(A) = 〈e�, (c�+1 − A)−1e�+g+1〉 for 0 ≤ � ≤ g − 1,

Λg(A) = 〈eg, Ae2g+1〉.
The resolvent entries can again be given explicitly in terms of Δ(z).
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Lemma 6.5 ([32, Theorem 2.17]). Let A ∈ GMP(C) be a periodic GMP matrix.
Then for 0 ≤ � ≤ g − 1

Λ�(A)=−(Resc�+1
Δ)−1

(6.12)

=−
(
tr

( �−1∏

k=0

a(c�+1, ck+1;pk)

[
p�

q�

][
p� q�

]
j

g−1∏

k=�+1

a(c�+1, ck+1;pk)a(c�+1,pg)

))−1

.

This allows to describe TE(CE) as an algebraic manifold. Let us fix a finite union
of g + 1 intervals and let ΔE denote the associated discriminant defined in terms
of the Ahlfors function (1.15). Then for coefficients �p let A(�p) ∈ GMP(CE) be a
periodic GMP matrix and define

f0(�p) = λg+1〈�p, �q〉 + d,

f�(�p) = Λ�−1(A(�p))λ� − 1, for 1 ≤ � ≤ g + 1,

and FE : U ⊂ R2(g+1) → Rg+2 by

FE(�p) =
(
f0(�p), . . . fg+1(�p)

)
.(6.13)

We then define the isospectral manifold by

ISE = {�p ∈ R2g : FE(�p) = 0}.

The name is justified by Theorem 6.6:

Theorem 6.6 ([12, Theorem 1.6 and Theorem 1.10]). Let A ∈ GMP(CE), then

A ∈ TE(CE) ⇐⇒ ΔE(A) = Sg+1 + S−(g+1).(6.14)

Moreover, for �p such that A(�p) ∈ GMP(CE) we have that

A(�p) ∈ TE(CE) ⇐⇒ FE(�p) = 0.

6.3. Resolvents in the general case and the Jacobi flow. Similar to (6.12)
one can also find explicit expressions for Λn for general (not necessarily periodic)
GMP matrices. Let A ∈ GMP(C) and for n = j(g + 1) + � for j ∈ Z and 0 ≤ � ≤ g
set

Λn(A) =

{
〈en, (c�+1 − A)−1en+g+1〉, � 
= g,

〈en, Aen+g+1〉.

Lemma 6.7 ([32, Lemma 3.2]). Let A ∈ GMP(C). Then for n = j(g + 1) + � and
� 
= g we have

Λn(A)

(6.15)

=−
(
tr

( �−1∏

k=0

a(c�+1, ck+1;p
(j+1)
k )

[
p
(j+1)
�

q
(j+1)
�

][
p
(j)
� q

(j)
�

]
j

g−1∏

k=�+1

a(c�+1, ck+1;p
(j)
k )a(c�+1,p

(j)
g )

))−1

.

The explicit representation will be crucial in the following. Moreover, let us
mention that due to the finite band block structure of GMP matrices, building
(formal) resolvents is a purely local computation (compare e.g. [32, eq (3.8)]). This
can be seen by the formula above, where only the entries of A from the blocks j
and j + 1 are needed to compute Λn.



ORTHOGONAL RATIONAL FUNCTIONS WITH REAL POLES 31

Recall that we discussed already in the beginning of this section that to any
GMP matrix A we can associate a Jacobi matrix J , namely by setting the resolvent
functions equal to (6.5). Let us denote this map by F . It is a deep result from
[32, Proposition 5.5.] that this map is (up to a certain identification) invertible.
An important question is if we can express the Jacobi parameters of J = FA in
terms of the coefficients of A. Let {�pj} denote the GMP coefficients and {aj , bj}
the Jacobi coefficients. Then we have already seen that

a0 = ‖�p0‖, b−1 = q(−1)
g p(−1)

g .

Let

SJ = S−1JS,

and note that

a0(SJ) = a1(J), b−1(SJ) = b0(J),

where by ak(J), bk(J) we mean the Jacobi parameters of the Jacobi matrix J . Thus,
if one understands the transform on GMP matrices which is induced by the shift
action on Jacobi matrices, one can inductively obtain the Jacobi parameters by the
formulas above. This leads to the definition of the Jacobi flow on GMP matrices,
which is defined by the following commutative diagram:

(6.16)

GMP
J−→ GMP

F
⏐* F

⏐*

Jacobi
S−→ Jacobi

Let us mention that this is one of the reasons why it is convenient to work with
two-sided operators. If in this construction we considered the shift action on �2+,
which is not unitary, then it is possible that for some m, ck ∈ σ((S∗

+)mJ+Sm
+ ), and

thus the corresponding half-line GMP matrix would not be well defined.
The Jacobi flow is defined and discussed in [32, Section 4]. We provide the

motivating ideas of the Jacobi flow and its precise definition below. First, note that
in [32], we have the ordering of the poles

CA :=
[

. . . ∞ c1 c2 . . . cg ∞ c1 . . .
]

and recall that we anchored the blocks between ∞ (at position −1) and c1 (at
position 0). Note that for Jacobi matrices, all poles are equal to ∞, and SJ
corresponds to shifting an ∞-pole from position 0 to position −1. Now applying
the spacial shift to GMP matrices would be of a different flavor, as it shifts c1 from
0 to −1. Thus, one first has to shift ∞, which is now at position g +1, to the front,
and then one may apply the spacial shift. This is done in g-steps. The O transform
defined below corresponds changing the order from CA to

C̃A =
[

. . . cg c1 c2 . . . cg−1 ∞ cg c1 . . .
]
.

Letting

o(φ) =

[
sin φ cosφ
cosφ − sin φ

]
,

we make Definition 6.8.
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Definition 6.8. We define the map:

O : GMP(c1, c2, . . . , cg) → GMP(cg, c1, . . . , cg−1)

in the following way. Let O = OA be the block-diagonal matrix

O =

⎡
⎢⎢⎢⎢⎣

. . .

O−1

O0

. . .

⎤
⎥⎥⎥⎥⎦

,

where Ok are the (g + 1) × (g + 1) orthogonal matrices

Ok =

[
Ig−2 0

0 o(φk)

]
,
[
sin φk cosφk

]
=

[
p
(k)
g−1 p

(k)
g

]

√
(p

(k)
g−1)

2 + (p
(k)
g )2

.(6.17)

Then

OA := SO∗
AAOAS−1.(6.18)

As explained above, the Jacobi flow then is defined by applying O g-times, in
order to shift ∞ through the full block. This leads to Definition 6.9:

Definition 6.9. We define the Jacobi flow transform

J : GMP(CA) → GMP(CA)

by
J A := S−(g+1)O◦gASg+1.

It is shown in [32, Equation (4.8) and Lemma 4.4] that there exists a block-
diagonal unitary mapping UA, such that

J A = S−1U∗
AAUAS.(6.19)

Let us also note that

S−(g+1)O(A)S(g+1) = O(S−(g+1)AS(g+1)),(6.20)

which has the consequences

O(J ◦mA) = J ◦m(OA)(6.21)

and
S−(g+1)(J ◦mA)S(g+1) = J ◦m(S−(g+1)AS(g+1)).

7. Proof of Theorem 1.10

Lemma 7.1 allows us to extend J+ to a two-sided Jacobi matrix J acting on
�2(Z) in a way such that ck belong to the resolvent domain of J .

Lemma 7.1. Let μ be a compactly supported probability measure such that E =
ess supp μ is a union of g + 1 intervals. Let

m+(z) =

∫ ∞

−∞

1

x − z
dμ(x)

and J+ the associated Jacobi matrix and let ck ∈ R \ E for 1 ≤ k ≤ g. Then there
exists a two-sided Jacobi matrix J with the following properties:

(i) J+ = Π+JΠ+;
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(ii) there exists J̊ ∈T (E) so that J− :=Π−SJS−1Π− obeys J− =Π−SJ̊S−1Π−;
(iii) ck belong to the resolvent domain of J ;

(iv) ck belong to the resolvent domain of J̃+ := Π+SJS−1Π+.

Proof. Let J denote the extended two-sided matrix. Note that J is defined by J+,
a0, a−1, b−1 and J−. We fix J+ and a0, a−1 and choose J− and b−1 appropriately.

By (6.7) we have

m̃+(z) =
1

b−1 − z − a2
0m+(z)

.

Thus, ck is a pole of m̃+(z) if and only if it is a zero of b−1 − z − a2
0m+(z). Choose

b−1 so that

b−1 − ck − a2
0m+(ck) 
= 0.

This already defines J̃+.
Let us write (6.2) at position −1 rather than at position 0 and let m− be the

resolvent function of J− and m̃+ the resolvent function of J̃+. Then we see that

− 1

R−2−2(z)
= − 1

m−(z)
+ a2

0m̃+(z), − 1

R−1,−1(z)
= − 1

m̃+(z)
+ a2

0m−(z).

If m̃+(ck) ∈ {0, ∞}, we choose m− so that m−(ck) /∈ {0, ∞} and if m̃+(ck) /∈
{0, ∞} we set m−(ck) = 0. In both cases R−2,−2(ck) 
= ∞ and R−1,−1(ck) 
= ∞
and we obtain (iii). �

We will apply Lemma 7.1 in the following way. First we choose c1, . . . cg as the

zeros of the Ahlfors function of C\E. Let μ be a given Stahl-Totik regular measure
and E = ess supp μ. To this measure we construct J as above. Let further μ̃ be
the spectral measure of J̃+. Clearly E = ess supp μ̃ and from the characterization
of regularity by existence of the limit and equality in (1.2) it follows that also μ̃ is
regular. Due to (iii) we can form orthogonal rational functions with respect to the
periodic sequence C = (c1, . . . , cg, ∞, c1, c2, . . . ). On the other hand (iv) allows us

to associate to J a two-sided GMP matrix in the sense of [32]. In particular, J̃+

satisfies the assumptions of Lemma 1.11.
It was noted in [32, Section 2.2] that

(7.1) − log|Ψ(z)| =

g+1∑

k=1

GE(z, ck)

and that the Yuditskii discriminant has the form (1.15) for some λk > 0 and d ∈ R.
Note that the constants λk can be found by computing the residue of ΔE at the
poles ck. By using (1.14) and (7.1), we find the residues to be the same constants
λk defined in a more general setting in (1.6).

Proof of Lemma 1.11. Denote by μ the canonical spectral measure for J . Note that

σess(A) = ess supp μ = E = Δ−1
E ([−2, 2]).

Since ΔE maps R\{c1, . . . , cg} to R and is piecewise strictly monotone, by a spectral
mapping theorem, this implies that for J = ΔE(A), σess(J) = [−2, 2].

As noted in Section 1, regularity of the Jacobi matrix J implies CE-regularity by
Corollary 1.7, and this can be characterized in terms of GMP matrix coefficients
by Theorem 1.9. The GMP matrix structure together with (1.15) implies that
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J = ΔE(A) is a type 3 block Jacobi matrix (1.16); the diagonal entries of the off-
diagonal blocks vj are given by λkΛj(g+1)+k for k = 0, . . . , g, with the convention
λ0 = λg+1. Thus,

det vj =

g∏

k=0

λkΛj(g+1)+k.

By applying the criterion for regularity in Theorem 1.9 to the GMP matrix A and
to its resolvents (ck − A)−1, we conclude that J obeys (1.17). It follows that J is
regular with σess(J) = [−2, 2]. �

If Ã+ is such that σess(Ã+) = E and the corresponding measure is regular on

E, then ΔE(Ã+) is a block Jacobi matrix which due to Lemma 1.11 is regular for

[−2, 2]. Therefore, if {v�, w�} denote the block Jacobi coefficients of ΔE(Ã+), by
[23, Theorem 3.1] we have

lim
N→∞

1

N

N∑

�=1

‖v� − I‖ + ‖w�‖ = 0.(7.2)

We note that since C = sup�(‖v�(A) − I‖ + ‖w�‖) < ∞, it follows from Cauchy-
Schwarz and the AM-GM inequality that
(

1

N

N∑

�=1

‖v�−I‖+‖w�‖
)2

≤ 2

N

N∑

�=1

‖v�−I‖2+‖w�‖2 ≤2C
1

N

N∑

�=1

‖v�−I‖+‖w�‖

and thus

lim
N→∞

1

N

N∑

�=1

‖w�‖2 + ‖v� − I‖2 = 0 ⇐⇒ lim
N→∞

1

N

N∑

�=1

‖w�‖ + ‖v� − I‖ = 0.(7.3)

We will use this equivalence freely in the following.
In the setting of periodic Jacobi matrices and polynomial discriminants (i.e., Δ

is a polynomial and {v�, w�} are the coefficients of the block Jacobi matrix Δ(J+))
it is shown in [7] that

∞∑

�=1

‖w�‖2 + ‖v� − I‖2 < ∞ ⇐⇒
∞∑

m=1

d((S∗
+)mJSm

+ , T +
E )2 < ∞.(7.4)

It was then stated in [23] that since all the arguments in [7] are local, in this setting
(7.3) yields (1.13). Let us emphasize that finite gap sets whose isospectral torus
consists of periodic Jacobi matrices are very special and the arguments in [23] only
apply to this setting. Yuditskii [32] has extended the work of [7] and one has the
same localness, but since the construction is quite involved, we will provide the
main ideas of proof. In this case, the condition on the right-hand side of (7.4)
is still the same, i.e., a condition for a Jacobi matrix J+, but on the left-hand
side {v�, w�} are the coefficients of the block Jacobi matrix ΔE(A), where A is an
associated GMP matrix and ΔE is the rational function as defined in (1.15).

We will start with the main ingredients of the proof that the left-hand side in
(7.4) implies the right-hand side and mention certain modifications to our setting.
After this preparatory work will show how this can be applied to our setting.

We concluded from regularity that J = ΔE(Ã+) satisfies (7.2). As may be seen in
[7], and [32], it is convenient to rewrite this condition into a “multiplicative form”.
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This leads to the notion of the Killip-Simon functional that we will define below.
For a GMP matrix A ∈ GMP(CE), we define the functional as in [32, Section 6] by

H+(A) =
∞∑

�=0

h(v�, w�, v�+1),(7.5)

where

h(v�, w�, v�+1) =
1

2
tr(v∗

�v� + w2
� + v�+1v

∗
�+1) − (g + 1) − log det v�v�+1.

For a square matrix X its modulus is defined by |X| :=
√

X∗X. Moreover, define
G(|X|) = |X|2 − I − log |X|2. Then we have

2h(v�, w�, v�+1) = tr
(
w2

� + G(|v�|) + G(|v∗
�+1|)

)
.

In particular, it follows from |v�|, |v�+1| > 0 that h(v�, w�, v�+1) > 0. In fact even

more is true. There exists C̃ > 1 so that if ‖v� − I‖ < 1
2 then by [7, Proposition

11.12]
1

C̃
‖v� − I‖ ≤ ‖|v�| − I‖ ≤ C̃‖v� − I‖.

Thus, if C̃‖v� − I‖ < 1
2 we conclude that ‖|v�| − I‖ < 1

2 and thus the eigenvalues

of |v�| are greater than 1
2 . Under this assumption (for � and � + 1) it is shown in

[7, Theorem 11.13] that there exists a constant C so that

1

C
h(v�, w�, v�+1) ≤

(
‖v� − I‖2 + ‖w�‖2 + ‖v�+1 − I‖2

)
≤ Ch(v�, w�, v�+1).(7.6)

A key observation is that the functional H+(A) is related to the shift action of Sg+1

on the GMP matrix A. But finally we want to conclude something about

SJ = S∗JS,

i.e., the shift action on J . This is another motivation of the Jacobi flow as defined
above.

The following key lemma, which follows essentially from (6.19), allows for the
computation of the “derivative” in the Jacobi flow direction, and is essential in
order to extract from the finiteness of H+(A) properties of the associated Jacobi
matrix J .

Lemma 7.2 ([32, Lemma 6.1]). Let v
(�)
jk , w

(�)
jk denote the matrix entries of v�, w�

and

δJH+(A) =
1

2
〈ΔE(J A)e−1, ΔE(J A)e−1〉 − 1 − log(J v)(−1)

g,g (J v)(0)g,g.

Then

H+(A) = H+(J A) + δJH+(A).(7.7)

Proof. Using (6.19) the proof is based on the realization that due to the diagonal
structure of UA, conjugating A by UA does not affect H+. Thus, δJH+(A) corrects
for the term which is omitted in H+(J A) due to the shift. �

For later reference let us mention that due to (6.18) we can also relate H+(A)

and H+(ÕA). Moreover, it is easy to see that we can also relate H+(A) and
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H+(S−(g+1)AS(g+1)) explicitly. Moreover, Lemma 7.2 allows to obtain �2 condi-
tions for the coefficients of J ◦m(A) from finiteness of H+(A). We sketch the idea
in the following. Let us define

H̃+(A) =

∞∑

m=0

δJH+(A(m)), where A(m) = J ◦m(A).

Since all terms are positive, iterating (7.7) yields

H̃+(A) ≤ H+(A).

In particular, H+(A) < ∞ implies H̃+(A) < ∞. The vector ΔE(A(m))e−1 has only
2g+3 nonvanishing entries which are entries of the last columns of v−1(m), w−1(m)
and v0(m). Let us denote this 2g + 3-dimensional vector by x(m) and note that

the first and the last components are the positive entries x0(m) = (v(m))
(−1)
g,g and

x2g+2(m) = (v(m))
(0)
g,g. With this notation we have

δJH+(A(m)) =
1

2

(
G(x0(m)) + G(x2g+2(m)) +

2g+1∑

j=1

xj(m)2
)

.(7.8)

Thus, H̃+(A) < ∞ implies already �2-conditions for the vector x(m). This is used

to conclude from H̃+(A) < ∞ that A(m) is �2-close to be periodic and that the
periodic operator is �2-close to ISE. That is, if {�pj(m), �qj(m)}m∈N0

denote the
GMP parameters of A(m), then [32, Theorem 1.20]

(7.9)
{�p0(m) − �p−1(m)}m∈N0

∈ �2(N0, R2(g+1)),

{FE(�p0(m))}m∈N0
∈ �2(N0, Rg+2).

To show how one obtains from (7.9) convergence of (S∗
+)mJSm

+ to T +
E in the sense

of (7.4), we need one more ingredient: it is well known that there are continu-
ous functions, A, B, on Rg/Zg, which can be expressed explicitly in terms of the
Riemann theta function associated to E1 [28, Theorem 9.4.], and a fixed element
χ ∈ Rg/Zg, such that

TE = {J(α) : α ∈ Rg/Zg}(7.10)

and J(α) is the Jacobi matrix built from the coefficients

am(α) = A(α − mχ), bm(α) = B(α − mχ).(7.11)

Recall that by the definition of the Jacobi flow, if J is the Jacobi matrix associated
to A, then S−mJSm is the Jacobi matrix associated to A(m). Since every point of
ISE = F−1

E (0) is regular for FE, by [7, Lemma 11.3] there exists a constant C > 0,
such that

dist(�p, ISE) ≤ C‖FE(�p)‖,(7.12)

where �p are chosen from a fixed compact neighborhood of ISE, see also [32, page

755]. Taking an element Åm ∈ TE(CE) so that

dist(�p(n), ISE) = dist(A(�p(n)), Åm),

1To be precise it is the Riemann theta function of the Riemann surface of the function√∏g
k=0(z − ak)(z − bk), where ak,bk denote the gap edges of E, cf. (1.11).
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one can conclude from (7.9) and (7.12) that
∑

n≥0

dist(A(�p(n)), Åm)2 < ∞.(7.13)

Letting J(αm) ∈ TE be the Jacobi matrix with F (Åm) = J(αm), then (6.6) implies
that

a(m)2 − A(αm) ∈ �2+, b(m) − B(αm) ∈ �2+.

Using in addition the smoothness of the Jacobi flow, one can show that

αn =
n∑

j=1

εα
m − mχ, εα

m ∈ �2(N0, Rg).

This is even stronger than (7.4); cf. [32, Lemma 7.2].
Before we start with our construction, we have to mention a certain technical

issue. If {fm} is a sequence, then clearly {fm − 1} ∈ �2 implies

lim inf
m→∞

fm > 0.

If |fm − 1| is only Cesáro summable, then this is not necessarily the case. However,
for any δ > 0 the set with fm < δ will be sparse in the following sense. Let us
introduce the notation {fm} ∈ CS for sequences {fm} satisfying

lim
N→∞

1

N

N∑

m=1

|fm| = 0,

and we call a set T ⊂ N sparse if

lim
N→∞

|T ∩ {1, 2, . . . , N}|
N

= 0.

An elementary observation, which will be used repeatedly, is that for f ∈ CS, the
set {m ∈ N | |fm| ≥ δ} is sparse for any δ > 0. This follows immediately from
Markov’s inequality.

We have already concluded from regularity that one and hence both of the con-
ditions in (7.3) hold. Due to the phenomena described above and the log in the
definition of h(v�, w�, v�+1) it is not immediately clear that (7.3) also implies

lim
N→∞

1

N

N∑

�=0

h(v�, w�, v�+1) = 0.(7.14)

However, using in addition once again regularity, we can show (7.14).

Lemma 7.3. Let a Jacobi matrix satisfy the conditions of Lemma 1.11 and {v�, w�}
denote the coefficients of the associated block Jacobi matrix J = ΔE(A). Then (7.14)
holds.

Proof. Recall that

h(v�, w�, v�+1) =
1

2
tr
(
(|v�|2 − I) + (|v∗

�+1|2 − I) + w2
�

)
− log det v�v�+1.

Regularity allows us to consider the terms in h(v�, w�, v�+1) separately. It follows
directly from (7.3) that

lim
N→∞

1

N

N∑

�=0

tr w2
� = 0.
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Moreover, (1.17) implies that

lim
N→∞

1

N

N∑

�=0

log det v� = 0.

Thus it remains to show that

lim
N→∞

1

N

N∑

�=0

tr(|v�|2 − I) = 0, lim
N→∞

1

N

N∑

�=0

tr(|v∗
� |2 − I) = 0.(7.15)

For a matrix A ∈ Mat(n, R), let σi(A) denote its singular values and note that
tr |A| =

∑
σi(A). For A, B ∈ Mat(n, R) we will need the following inequalities

| trA| ≤ tr |A|,
n∑

i=1

σi(AB) ≤
n∑

i=1

σi(A)σi(B),(7.16)

which can be found for instance in [16, eq. (3.3.35) and Theorem 3.3.14]. Thus we
have∣∣∣∣∣

1

N

N∑

�=0

tr(|v�|2 − I)

∣∣∣∣∣ ≤ 1

N

N∑

�=0

tr(
∣∣|v�|2 − I

∣∣) =
1

N

N∑

�=0

tr(|(|v�| − I)(|v�| + I)|).

Using (7.16) and a uniform bound on σi(|v�| + I) we get

tr(|(|v�| − I)(|v�| + I)|) =

g∑

j=0

σj((|v�| − I)(|v�| + I)) ≤ C

g∑

j=0

σj(|v�| − I),

where C does not depend on �. The last sum is the trace norm for |v�|− I and thus
by the equivalence of norms on Mat(n, R) we find C2 so that

∣∣∣∣∣
1

N

N∑

�=0

tr(|v�|2 − I)

∣∣∣∣∣ ≤ C2
1

N

N∑

�=0

‖|v�| − I‖.

Define the set

IN =

{
� : C̃‖v� − I‖ >

1

2

}
∩ [1, N ]

and note that (7.2) implies

lim
N→∞

|IN |
N

= 0.(7.17)

It follows as in [7, Proposition 11.12] that for � /∈ IN , there exists a constant C3 so
that

‖|v�| − I‖ ≤ C3‖v� − I‖.

For � ∈ IN we can estimate ‖|v�| − I‖ uniformly and using (7.17) and (7.3) we
obtain (7.15). The proof for v∗

� works the same by using [24, Lemma 4.6.5.] instead
of [7, Proposition 11.12]. This finishes the proof. �

We are now ready to adapt Yuditskii’s construction [32] to our setting. Let
μ be a regular measure with ess supp μ = E and let J+ be the associated Jacobi

matrix. As already described after Lemma 7.1, we find J and J̃+ such that all

ck ∈ CE belong to the resolvent set of J̃+ and J and J̃+ is also regular. Let Ã+

and A denote the GMP matrix associated to J̃+ and J respectively and {v�, w�}
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denote the block Jacobi coefficients of ΔE(A). Let us further truncate A after
N positive blocks before ∞ (i.e. before the position −1 + N(g + 1)) and extend

it by some element Å ∈ TE(CE) so that ck /∈ σ(AN ). To be precise, we first
truncate A and consider its resolvent function a2

0r−, then we can extend it as in
Lemma 7.1 by some reflectionless r+ so that all ck ∈ CE belong to the resolvent
set of the associated Jacobi matrix and then we consider the associated GMP
matrix by [32, Proposition 5.5]. Since elements from the isospectral torus satisfy
the magic formula and computing resolvents is a purely local process, we would like
to conclude from the compactness of TE(CE) that

H+(AN ) =

N∑

�=1

h(v�−1, w�, v�) + O(1),

where AN denotes the truncation described above. However, due to the log-term in
the definition of h(v�−1, w�, v�) one must be careful. At the place where we modify

A by extending it by Å, by formula (6.15), when computing Λn, in a certain range

of n given precisely below, one mixes coefficients from A and Å. Thus we need to
argue that

− log Λn

does not grow too fast so that we can still conclude that

lim
N→∞

1

N
H+(AN ) = 0.(7.18)

However, looking at the formula (6.15) and the definition of the Blaschke-Potapov

factors, if all the coefficients can be bounded uniformly, we see that if p
(j)
g > δ we

find a constant C only depending on the bounds of the coefficients and of δ so that

Λn(AN ) ≥ C.(7.19)

Note now that

Λ−1+(N−1)(g+1)(AN ) = p(N−1)
g ,

which is still a coefficient of A. But

Λ−1+N(g+1)(AN ) =: p̊g

is already a coefficient from Å. The mixing of coefficients of A and Å in computing
Λn(AN ) happens for −1+(N −1)(g +1) < n < −1+N(g +1). But in this case the
only value that can make Λn(AN ) small is p̊g, and for elements of the isospectral
torus we know that

p̊g =
1

λg+1

and thus we can conclude (7.19) and therefore (7.18).

Together with H̃+(AN ) ≤ H+(AN ), we conclude that

lim
N→∞

1

N
H̃+(AN ) = 0.(7.20)

Realizing that all the arguments in [32, Theorem 1.20] are local, using 2N blocks
of A, we can obtain a local version of this theorem.
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Proposition 7.4. Let J be constructed as above and A be the associated GMP
matrix. Then, there exists an N independent constant C and a sparse set IN such
that

(7.21)

N∑

m=1

‖�p0(m) − �p−1(m)‖2 ≤ C(H̃+(A2N ) + |IN |),

N∑

m=1

‖FE(�p0(m))‖2 ≤ C(H̃+(A2N ) + |IN |).

We will need a more quantitative version of [32, Lemma 6.6]:

Lemma 7.5. Let ψn, ψ̃n, τn and τ̃n be given sequences and assume that there exists
η > 0 such that

(7.22) cos ψn ≥ η, cos ψ̃n ≥ η, 0 ≤ τn ≤ 1

η
, 0 ≤ τ̃n ≤ 1

η
.

Define

(7.23) αn :=

[
τn 0
0 1

] [
sin ψn cosψn

cosψn − sin ψn

]
−
[
sin ψ̃n cos ψ̃n

cos ψ̃n − sin ψ̃n

] [
1 0
0 τ̃n

]
.

Then, there exists C depending only on η so that

‖{cosψn − cos ψ̃n}‖�2(N,C) ≤ C‖{αn}‖�2(N,C)2×2 ,

‖{sin ψn − sin ψ̃n}‖�2(N,C) ≤ C‖{αn}‖�2(N,C)2×2 .

Proof. If ‖{αn}‖�2(N,C)2×2 = ∞ the claim is trivial. If it is finite, set S :=
‖{αn}‖�2(N,C)2×2 . The constant C > 0 may increase throughout the proof. Di-
rectly from (7.23) we have

‖{cosψn − cos ψ̃n}‖�2 ≤ S and ‖{τn cosψn − τ̃n cos ψ̃n}‖�2 ≤ S.

Since

τn cosψn − τ̃n cos ψ̃n − τ̃n(cosψn − cos ψ̃n) = (τn − τ̃n) cosψn,

using τ̃n ≤ 1
η and cosψn ≥ η we find C > 0 so that

‖{τn − τ̃n}‖�2 ≤ CS.

Now, we have another two conditions

‖{τn sin ψn − sin ψ̃n}‖�2 ≤ S and ‖{sin ψn − τ̃n sin ψ̃n}‖�2 ≤ S.

Using

sin ψn − τ̃n sin ψ̃n = sin ψn − τnτ̃n sin ψn − τ̃n(sin ψ̃n − τn sin ψn)

and ‖{τn sin ψn − sin ψ̃n}‖ ≤ S and τ̃n ≤ 1
η we conclude that

‖{sin ψn(1 − τnτ̃n)}‖�2 ≤ CS.

Now we have

1 − τ2
n = 1 − τnτ̃n + τn(τ̃n − τn)

and since | sin ψn| ≤ 1 and |τn| ≤ 1
η , we conclude

‖{(τ2
n − 1) sin ψn}‖ ≤ CS.
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Again by, |τn| ≤ 1
η we also get a bound for {(τn − 1) sin ψn}. Finally, since

sin ψn − sin ψ̃n = τn sin ψn − sin ψ̃n − (τn − 1) sin ψn,

we obtain the also the estimate for {sin ψn − sin ψ̃n}. �

Proof of Proposition 7.4. In the proof we will find constants C > 0 and sparse sets
IN . These quantities will change throughout the proof. Note that the union of
sparse sets is clearly sparse. First we mention an important locality property of
the Jacobi flow. In the following we will derive estimates for entries of A2N (m) in
the blocks 0 and −1. Due to the locality property of the Jacobi flow, for 0 < m ≤
2N − 1, the coefficients of A2N (m) and A(m) coincide; this is nicely visualized in
the diagram [32, eq. (4.12)]. Similarly, we have already mentioned that computing
entries of the resolvents, due to the band structure, can also be done locally. Thus,
our estimates will be derived for the coefficients of A2N (m), but by restricting it
to 0 < m ≤ N they agree with the coefficients associated to A. For this reason we
will also notationally not distinguish between the coefficients of A and the ones of
A2N .

By the explanation following Lemma 7.2 and (7.20), we conclude that

lim
N→∞

1

N

N∑

m=1

(
G(x0(m)) + G(x2g+2(m)) +

2g+1∑

j=1

xj(m)2
)

= 0.

Notice that G obeys

c−1
ε (x − 1)2 ≤ G(x) ≤ cε(x − 1)2, ∀x ∈ (ε, ε−1).

Thus, we find a sparse set IN and C > 0 so that

N∑

m=1

(
(x0(m) − 1)2 + (x2g+2(m) − 1)2 +

2g+1∑

j=1

xj(m)2
)

≤ C

( N∑

m=1

(
G(x0(m)) + G(x2g+2(m)) +

2g+1∑

j=1

xj(m)2)

)
+ |IN |)

)
.

(7.24)

Thus, for 1 ≤ j ≤ 2g + 1,

‖{xj(m)}N
m=1‖2 ≤ C

(
H̃+(AN ) + |IN |

)

and

‖{x0(m) − 1}N
m=1‖2 ≤ C

(
H̃+(AN ) + |IN |

)
,

‖{x2g+2(m) − 1}N
m=1‖2 ≤ C

(
H̃+(AN ) + |IN |

)
.

We note that
x2g+2(m) = λ0Λ−1(m) = λ0p

(0)
g (m),

and thus

1

N

N∑

m=1

(λ0p
(0)
g (m) − 1)2 = 0.(7.25)

This is one component of FE.
Let us now show the first inequality in (7.21). Denote Â = OA, where OA is

the transform defined in (6.18). We use the hat for all entries related to Â and
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ΔE(Â), respectively. The entries of A(m) are denoted by {p
(j)
k (m), q

(j)
k (m)}. Recall

that m corresponds to application of the Jacobi flow, j denotes the block and k the
component of the vector �pj(m). We use similar notation for Â, ΔE(A) and ΔE(Â).
Due to the definition (6.18), we find
(7.26)[

v
(0)
g−1,g−1(m) 0

v
(0)
g,g−1(m) λ0p

(0)
g (m)

]
o(φ(0)

g (m)) = o(φ(−1)
g (m))

[
λ0p̂

(0)
g (m) 0

ŵ
(0)
0,g(m) v̂

(1)
0,0(m)

]
.

Note that v
(0)
g,g−1(m) = x2g+1(m). It was mentioned after Lemma 7.2 that H+(Â)

can be expressed in terms of H+(A). Therefore, we conclude by (6.20) that (7.25)

also holds for p̂
(0)
g (m). Note that xg+2(m) = ŵ

(−1)
0,g (m). Since shifting by a full

block in the very beginning only adds a fixed constant, and J commutes with this
shift by (6.21), we can apply Lemma 7.5 to (7.26) and obtain by (7.24) that

‖{sin φ(−1)
g (m) − sin φ(0)

g (m)}N
m=1‖�2 ≤ C(H̃+(AN ) + |IN |).

Thus, by (6.17)

‖{p
(−1)
g−1 − p

(0)
g−1}N

m=1‖�2 ≤ C(H̃+(AN ) + |IN |).(7.27)

Since by [32, eq (4.2)] one can pass from j to j − 1 by using Â, we obtain (7.27)
for 0 ≤ j ≤ g. Similarly, by [32, eq (4.2)], one obtains the estimates for the
qj-coefficients. This finishes the proof of the first inequality in (7.21).

It remains to prove (7.21) for the other components of FE. The proof of Lemma

7.5 yields an estimate for ‖{(v
(−1)
g−1,g−1(n) − 1) sin φ

(−1)
g (n)}‖2 or, equivalently, it

shows
‖{(Λ−2(m)λg − 1)p

(−1)
g−1 (m)}‖ ≤ C(H̃+(AN ) + |IN |).

Since p
(−1)
g−1 (m) may approach zero, it does not imply yet give an estimate for

{(Λ−2(m)λg − 1)}. If we can also estimate

‖{(Λ−2(m)λg − 1)q
(−1)
g−1 (m)}N

m=1‖,

then infm

(
(q

(−1)
g−1 (m))2 + (p

(−1)
g−1 (m))2

)
> 0 yields

‖{(Λ−2(m)λg − 1)}N
m=1‖ ≤ C(H̃+(AN ) + |IN |).

To this end, we note that

(7.28) Λ−2(m + 1) =
cosφ

(−1)
g (m)

cosφ
(−2)
g (m)

Λ−2(m).

Indeed, by definition of the Jacobi flow

U(�p−2(m))

⎡
⎢⎢⎢⎢⎣

v
(−2)
g,g

∗ v
(−1)
0,0

∗ ∗ . . .

∗ ∗ ∗ v
(−1)
g−1,g−1

⎤
⎥⎥⎥⎥⎦

(m + 1) = v−1(m)U(�p−1(m)),

the second from below entry in the last column in this matrix identity means exactly

(7.28). Since by the above, we can estimate ‖{cosφ
(−1)
g (m) − cosφ

(−2)
g (m)}N

m=1‖�2

we obtain

‖{Λ−2(m + 1) − Λ−2(m)}N
m=1‖�2 ≤ C(H̃+(AN ) + |IN |).
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Now by [32, (4.10)] we have

p
(−1)
g−1 (m) = −q

(−1)
g−1 (m + 1)f(m),

where f(m) is an explicit function that can be small only on a sparse set. Combining
this with

(Λ−2(m)λg − 1)p
(−1)
g−1 (m) = −(Λ−2(m)λg − 1)q

(−1)
g−1 (m + 1)f(m),

we also get an estimate for ‖{(Λ−2(m)λg − 1)q
(−1)
g−1 (m)}N

m=1‖�2 , which shows

‖{(Λ−2(m)λg − 1)}‖ ≤ C(H̃+(AN ) + |IN |).
The same arguments with respect to OkA, k = 1, . . . , g − 1, in a combination with
(6.20), yield the estimates for all other components of FE. �

Lemma 7.6. There exist {εα
m} ∈ CS(N, Rg/Zg) and {εa

m} ∈ CS(N, R), {εb
n} ∈

CS(N, R) so that

a2
m = A

( m∑

j=1

εα
j − mχ

)
+ εa

m,

bm = B
( m∑

j=1

εα
j − mχ

)
+ εb

m,

where A, B are given in (7.11).

Proof. Let A(�p0(m)) be the periodic GMP matrix with coefficients �p0(m) and
A(αm) ∈ TE(CE), so that

dist(�p0(m), ISE) = dist(�p0(m), �̊p(αm)).

Thus, using (7.12) we obtain

N∑

m=1

dist(�p0(m), �̊p(αm))2 ≤ C(H̃+(AN ) + |IN |)

and by (6.6) we get

N∑

m=1

(a2
m − A(αm))2 ≤ C(H̃+(AN ) + |IN |),

N∑

m=1

(bm − B(αm))2 ≤ C(H̃+(AN ) + |IN |),

where again {am, bm}m∈N0
denote the coefficients of J+. Thus, dividing by N and

sending N → ∞, we obtain by (7.17) and (7.20) that

(7.29) {a2
m − A(αm)}m∈N0

, {bm − B(αm)}m∈N0
∈ CS .

The smoothness of the Jacobi flow transform, provided that p
(0)
g , p

(1)
g > δ, allows

for the definition of a sparse set IN so that

dist(�p0(m + 1), �̊p(αm − χ)) = dist(J (�p0(m), �p1(m)), J (�p(αm))

≤ C(E, J, δ){dist(�p0(m), �̊p(αm))

+ dist(�p0(m), �p1(m)) + |IN |}.
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Thus,

dist(�̊p(αm+1), �̊p(αm − χ)) ≤ C(E, J, δ)(dist(�p0(m), �̊p(αm))

+ dist(�p0(m), �p1(m)) + |IN |)
+ dist(�p0(m + 1), �̊p(αm+1)).

Moreover, we have

‖α − β‖ ≤ C1(E) dist(�̊p(α), �̊p(β)).

Thus, defining εα(m) = αm+1 − (αm − χ), we conclude from (7.21) that

{εα} ∈ CS(N, Rg/Zg).

�

Lemma 7.7. For fixed L ∈ N and δ > 0, the set

BL,δ =

{
m :

∥∥∥∥
m+�∑

j=m+1

εα
j

∥∥∥∥ ≤ δ for all � = 0, . . . , L − 1

}

has a sparse complement, i.e.,
|BL,δ∩{1,...,N}|

N → 1 as N → ∞.

Proof. Since shifts and linear combinations of CS sequences are in CS,
{∑m+�

j=m+1 εα
j

}∞
m=0

∈ CS for any �. Thus, for any �, the set
{
m :

∥∥∥∥
∑m+�

j=m+1 εα
j

∥∥∥∥ > δ
}

is sparse; the complement of BL,δ is a union of finitely many sparse sets, so it is
sparse. �

Proof of Theorem 1.10. It remains to prove that, for every ε > 0,

(7.30) lim sup
N→∞

1

N

N∑

m=1

dist(T +
E , (S∗

+)mJ+Sm
+ ) ≤ ε.

Fix L so that
∑∞

�=L e−�‖J+‖ ≤ ε/16. Choose δ > 0 so that

(7.31) |A(β1) − A(β2)| ≤ ε

8L
, |B(β1) − B(β2)| ≤ ε

8L

whenever |β1 − β2| ≤ δ.
Since dist(T +

E , (S∗
+)mJ+Sm

+ ) is uniformly bounded in m and the complement of
BL,δ is sparse,

lim sup
N→∞

1

N

∑

1≤m≤N
m/∈BL,δ

dist(T +
E , (S∗

+)mJ+Sm
+ ) = 0.

Set αm =
∑m

j=1 εα
j . For m ∈ BL,δ, estimating the distance to T +

E by the distance

to J(αm − mχ) gives

dist(T +
E , (S∗

+)mJ+Sm
+ )

≤
∞∑

�=0

e−�(|am+� − A(αm − (m + �)χ)| + |bm+� − B(αm − (m + �)χ)|).
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Using (7.31) for � < L and using our choice of L to bound the tail of the series, we
obtain

dist(T +
E , (S∗

+)mJ+Sm
+ )

≤ ε

2
+

L−1∑

�=0

e−�(|am+� − A(αm+� − (m + �)χ)| + |bm+� − B(αm+� − (m + �)χ)|).

Thus, to prove (7.30), it remains to prove

(7.32) lim sup
N→∞

1

N

∑

1≤m≤N
m∈BL,δ

L−1∑

�=0

e−�gm+� ≤ ε

2
,

where gp = |ap −A(αp −pχ)|+ |bp −B(αp −pχ)|. Note g ∈ CS by (7.29). Enlarging
the range of summation, we obtain

lim sup
N→∞

1

N

∑

1≤m≤N
m∈BL,δ

L−1∑

�=0

e−�gm+� ≤ lim sup
N→∞

1

N

N+L∑

p=1

L−1∑

�=0

e−�gp.

Now the sum in � can be separated as an explicit constant, so this lim sup is zero
since g ∈ CS. Then (7.32) follows, and the proof of (7.30) is complete. �
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Constructive Approximation

1 Introduction

Chebyshev polynomials are extremal polynomials with respect to the supremum norm
on a compact set E. First discovered with explicit formulas for the set E = [−1, 1],
see [3, 4], a general theory has developed for more general sets E, with important
classical and modern developments [5, 7, 11, 27, 31]. Aspects of this theory have been
extended to the setting of residual polynomials [7] (which are extremizers with respect
to a point evaluation rather than leading coefficient) and to the setting of Chebyshev
rational functions with poles in R = R ∪ {∞} [17].

To state the problems precisely, we make the following definitions. For c ∈ R we
denote

r(z, c) =
{

1
c−z , c �= ∞,

z, c = ∞.

We fix a compact proper subset E ⊂ R containing infinitely many points. Connected
components of R \ E are called gaps of E. We fix a sequence of poles C = (ck)

∞
k=1

with ck ∈ R\E. The sequence C can have repetitions, which are used to designate
multiplicity: we consider the spaces of rational functions Ln defined as

Ln =
{

P(z)

Rn(z)
: P ∈ Pn

}
, (1.1)

where Pn denotes the set of polynomials of degree at most n and

Rn(z) =
∏

1≤k≤n
ck �=∞

(z − ck). (1.2)

Of course, the spaces Ln could also be defined iteratively, by

Ln = span
{

r(z, cn)dn
}
⊕ Ln−1, L0 = {1},

where dn denotes the multiplicity of the pole cn up to that point,

dn =
∑

1≤k≤n
ck=cn

1.

Let ‖ · ‖E denote the supremum norm on E. We consider the two related extremal
problems:

Problem 1.1 (Chebyshev Extremal Problem)

mn(cn) := sup{Re λn : ∃Fn ∈ Ln such that ‖Fn‖E ≤ 1 and Fn − λnr(·, cn)dn ∈ Ln−1}.
(1.3)
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Constructive Approximation

Problem 1.2 (Residual Extremal Problem) For x∗ ∈ R\(E ∪ {ck : 1 ≤ k ≤ n}),

mn(x∗) := sup{Re Fn(x∗) : Fn ∈ Ln, ‖Fn‖E ≤ 1}. (1.4)

If ck = ∞ for all k, Problem 1.1 is the standard extremal problem for Chebyshev
polynomials on E. For this reasonwe refer toλn still as the leading coefficient.Whereas
theChebyshev extremal problemmaximizes the leading coefficient at the pole x∗ = cn ,
the residual extremal problem maximizes the value at a point x∗ which is not a pole.
We will use the notation x∗ for both problems when convenient.

For both problems, an extremal function exists (i.e., the supremum is a maximum)
and is unique (see Sect. 2). The goal of this paper is to study the extremal functions
Fn and their asymptotics as n →∞.

Problems 1.1 and 1.2 have a conformal invariance with respect to the group
PSL(2, R) ofR-preserving, orientation-preservingMöbius transformations. This con-
formal invariance is obfuscated by the use of polynomials in the definitions (1.1) and
(1.2), but can be made explicit in the language of divisors. Divisors on the Riemann
sphere C = C ∪ {∞} are elements of the free Abelian group over C. They can be
implemented as formal sums or as functions D : C → Z which take nonzero values
only at finitely many points; we will find the second interpretation notationally conve-
nient. The degree of D is the integer deg D = ∑

z D(z), and the divisor D is integral
if D(z) ≥ 0 for all z. We also write D1 ≤ D2, if D2 − D1 is integral and denote by
suppD = {z ∈ C : D(z) �= 0} the support of D. In particular, for a meromorphic
nonconstant function f : C → C, we denote its polar divisor by ( f )∞; the polar
divisor assigns to each pole the multiplicity of that pole, and takes zero values else-
where. Similarly, for w ∈ C, we define ( f )w = (1/( f −w))∞. The value deg( f )w is
independent of w and corresponds to the degree of f . We also follow the convention
to set ( f )w = 0, if f is a constant. For any n, we define the divisor D∞

n by

D∞
n (c) = #{k : ck = c, 1 ≤ k ≤ n}. (1.5)

In other words, in the functional interpretation, D∞
n = ∑n

k=1 χ{ck }. Note that by
definition deg D∞

n = n. Any integral divisor D with degree n generates a n + 1
dimensional vector space

L(D) = { f : C → C | f is meromorphic and ( f )∞ ≤ D}, (1.6)

and the definition (1.1) is equivalent to

Ln = L(D∞
n ). (1.7)

Now Problems 1.1, 1.2 can be unified as follows:

Problem 1.3 For a real integral divisor D∞
n with deg D∞

n = n containing only points
in R \ E, and a point x∗ ∈ R \ E, denote dn = D∞

n (x∗) and Ln = L(D∞
n ) and find

mn(x∗) := sup{Re lim
x→x∗

Fn(x)

r(x, x∗)dn
: Fn ∈ Ln, ‖Fn‖E ≤ 1}. (1.8)
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The Chebyshev problem corresponds to dn > 0 (up to a permutation of c1, . . . , cn)
and the residual problem corresponds to dn = 0. Throughout this paper, we work in
the general setting of Problem 1.3.

In order to state our results in a conformally invariant form, we use the following
language:

Definition 1.4 For a sequence (t j )
m
j=0 in R with m ≥ 2, we say that the sequence is

cyclically ordered if it has no repetitions and there exists f ∈ PSL(2, R) such that
f (t0) = ∞ and f (t1) < f (t2) < · · · < f (tm). We will also use cyclic interval
notation: for distinct a, b ∈ R, we denote

(a, b) = {c | (a, c, b) is cyclically ordered}, [a, b] = {a, b} ∪ (a, b).

This gives a well-defined cyclic order, since PSL(2, R) transformations preserve
orientation on R.

Chebyshev polynomials for subsets of R have many universal properties; the
Chebyshev alternation theorem compresses all these properties in a way that uniquely
characterizes the extremizer. Namely, a polynomial Pn of degree n so that ‖Pn‖E ≤ 1
has a maximal set of alternation points if there are n + 1 points x1 < · · · < xn+1,
xi ∈ E, so that

Pn(x j ) = (−1)n+1− j . (1.9)

Then Pn is the Chebyshev polynomial for the set E, if and only if it has a maximal
set of alternation points. One way of viewing the alternation theorem is the following.
The Chebyshev polynomial, Tn , for E has n real and simple zeros and between each
of them there should be an alternation point, which gives n− 1 of them and then there
should be one at each gap edge of the extremal gap (in this case the one containing
∞) which sums up to n+1 points of alternation. In particular x1 and xn+1 will always
be counted, because of the natural order of R. Similarly, residual polynomials have an
alternation theorem, which relies on a notion of an x∗ alternation set [7]. Furthermore,
by [7], in the polynomial case, such a set characterizes the residual polynomial: Pn

is the residual polynomial for the set E if and only if ‖Pn‖E ≤ 1 and Pn has an x∗
alternation set.

In the setting of rational functions the counting is essentially more delicate, and the
relative ordering of the poles and alternation points play an important role. The reason
for this is that if between two zeros there is a gap with a pole c j , then the sign at the
next gap edge depends on the parity of the pole. This makes it necessary to define the
following sign function:

Sn(x) =
∑

1≤k≤n
ck �=x∗

χ[x∗,ck )(x) =
∑

c∈R\{x∗}
D∞

n (c)χ[x∗,c)(x).

Recall that a function F is called real if for all z ∈ C, F(z) = F(z).
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Definition 1.5 For a real function F ∈ Ln with ‖F‖E1, a set of distinct points
x1, . . . , xm ∈ E such that the sequence (x∗, x1, . . . , xm) is cyclically ordered and
satisfies the following alternation property

F(x j ) = (−1)m− j−Sn(x j ) (1.10)

for all j = 1, . . . , m is called an alternation set.We say that F has amaximal alternation
set if m = n + 1.

It should be noted that the notion of alternation set depends on the function F , the
class Ln , the set E, and the reference point x∗. We note that in what follows, whenever
we refer to extremal functions, we mean this in the sense of Problem 1.3.

Theorem 1.6 (Alternation theorem) A real function F ∈ Ln with ‖F‖E ≤ 1 is an
extremal function if and only if it has a maximal alternation set.

These results generalize standard results from the polynomial case: in the Cheby-
shev polynomial case, Sn(x) ≡ 0, and in the residual polynomial case, Sn has one
jump which may or may not affect the alternation criterion, depending on degree.
The case of Chebyshev rational functions was also previously formulated in [17]. In
all the real extremal problems, previously considered in the literature, the extremizer
is seen to be nonconstant. However, in the setting of residual rational functions, the
extremizer can be a constant function, and the alternation theorem lets us characterize
when this happens:

Theorem 1.7 The extremal function Fn is constant if and only if the divisor D∞
n is of

the form (1.5) for points c1, . . . , cn such that the points x∗, c1, c2, . . . , cn are in n+ 1
distinct gaps of E.

In particular, for the Chebyshev problem, x∗ = cn so Fn is always nonconstant.
These results will be proved in Sect. 2, along with additional properties of Fn and

its zeros. Let us assume that Fn is not constant and recall that (Fn)∞ ≤ D∞
n ; we call

a point x a “generalized zero” of Fn if either (Fn)0(x) > 0 or if

D∞
n (x)− (Fn)∞(x) > 0.

Thus, this notion includes both actual zeros of Fn and places where there is a reduction
in the order of the pole compared to the maximal allowed order. These generalized
zeros are precisely counted by the divisor

D0
n := (Fn)0 + D∞

n − (Fn)∞.

Since an alternation set is on E, note that changing x∗ through a single gap only
changes the alternation conditions up to an overall j-independent±1 factor. Therefore,
up to ± sign, the extremizer Fn for Problem 1.3 is unchanged as x∗ varies through a
single gap of E. Thus, Fn should be regarded as an extremal function of a gap, rather
than of a single point. In particular, the Chebyshev extremizer for Problem 1.1 is the
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same (up to ± sign) as the residual extremizer for Problem 1.2 for any x∗ in the
gap containing cn . Moreover, Fn might even be extremal for more than one gap. This
phenomenon is already known for the so-calledWidommaximizer defined below, and
is the content of the following corollary.

Corollary 1.8 Let Fn be an extremal function for x∗ ∈ (a,b). If (a j ,b j ) is a gap such
that |Fn(a j )| = |Fn(b j )| = 1 and D0

n = 0 on (a j ,b j ), then up to a ±1 factor, Fn is

an extremal function for any x j∗ ∈ (a j ,b j ).

From deg(Fn)0 = deg(Fn)∞ it follows that

deg D0
n = deg D∞

n = n (1.11)

so we can define the normalized pole counting measure

μn := 1

n

∑
c

D∞
n (c)δc (1.12)

and normalized generalized zero counting measure

νn := 1

n

∑
c

D0
n(c)δc. (1.13)

In Sect. 3,we consider the asymptotics of the extremal rational functions as n →∞,
extending results about root asymptotics from the polynomial setting. For a sequence
of divisors D∞

n as in Problem 1.3 we define

KC =
⋃
n≥1

suppD∞
n .

We will use the following hypothesis repeatedly in the results that follow:

Hypothesis 1.9 KC ∩ E = ∅ and in the topology dual to C(R), w-limn→∞ μn = μ.

A similar combination of assumptions, but with poles away from the convex hull
of E, is used in [28, Chapter 6] to study rational interpolation. Some of our current
work mirrors our work for orthogonal rational functions [10], but that work required
a periodic sequence of poles. In this sense, in addition to studying a different extremal
problem, our current setting is more general. To the best of our knowledge all previous
works also assumed that the sequence of divisors D∞

n ismonotonic. Let further (x∗n )∞n=0
be a sequence in R \ E which does not accumulate on E.

The behavior of log|Fn| is governed by the zero and pole distributions. This cor-
responds to two Riesz representations, with log|Fn| superharmonic (respectively,
subharmonic) away from the set of zeros (respectively, poles). The limiting pole distri-
bution μ directly determines the root asymptotics of the functions Fn and the limiting
zero distribution.
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We assume that E is not a polar set, i.e., the domain Ω = C\E is Greenian, and
we denote by G(z, w) = GE(z, w) the Green function and by ωE(dz, x) harmonic
measure for this domain.

Theorem 1.10 (Root asymptotics) Assume that E is not a polar set, Hypothesis 1.9
holds, and (x∗n )∞n=0 be a sequence in R\E not accumulating on E. Then uniformly on
compact subsets of C \ R,

lim
n→∞

1

n
log|Fn(z)| =

∫
GE(z, x)dμ(x).

Moreover,

w-lim
n→∞ νn =

∫
ωE(dz, x)dμ(x).

Our proof of root asymptotics relies on an explicit representation of Fn in terms of
the so-called n-extension En = F−1

n ([−1, 1]). Representations of this type appear for
instance in [7, 27]. In particular, using E ⊂ En and monotonicity of the Green function,
we obtain a Bernstein-Walsh type upper bound for Fn in terms of the Green functions
GE(z, c). This is the major difference between the L2 and the L∞ setting. In the L2

setting [10] an asymptotic upper bound is equivalent to Stahl–Totik regularity of the
measure, whereas in the L∞ setting this bound holds for any n.

As in [25, Corollary 1.2], this can be used to describe the behavior of the leading
coefficient.

Theorem 1.10 generalizes known polynomial results, which correspond to the
degenerate pole distribution μ = δ∞. Another notable case, related to [10], is of
a p-periodically repeating sequence of poles μ = 1

p

∑p
j=1 δc j .

In Sect. 4, we prove so-called Szegő-Widom asymptotics for Fn . To the best of
our knowledge, all previous results are only for polynomial extremal problems. Let
Ω be a domain in C which contains ∞ and E = ∂Ω be an analytic Jordan curve,
Tn the associated Chebyshev polynomial and BE denote the Riemann map that maps
Ω → D and BE(∞) = 0, normalized so that lim

z→∞ zBE(z) > 0. Faber [13] showed

that uniformly on compact subsets of Ω

lim
n→∞ Tn Bn

E = 1. (1.14)

In his landmark paper [31], Widom generalized this notion to multiply connected
domains. In the following let Ω be a domain in C which contains∞ so that E = ∂Ω

is not polar. We will describe the type of results for multiply connected domains, but
refer the reader for the precise definitions and statements to Sect. 4. The correct analog
for the Riemann map for multiply connected domains is the so-called complex Green
function

BE(z,∞) = e−GE(z,∞)−i G̃E(z,∞), (1.15)
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where ˜GE(z,∞) denotes the harmonic conjugate of GE(z,∞). To be more precise,
since GE(z,∞) is harmonic, BE(z,∞) is first defined locally and then using the
monodromy theorem [26, Theorem 11.2.1] extended to a global multivalued analytic
function in Ω . Due to the multivaluedness of BE, one cannot expect that Bn

E Tn con-
verges to a single analytic function as in (1.14). For this reason, Widom considered
a related character automorphic extremal problem. Let z0 ∈ Ω and let π1(Ω, z0)
denote the fundamental group of Ω with basepoint fixed at z0, and π1(Ω)∗ the group
of unitary characters of π1(Ω, z0); that is, group homomorphisms from π1(Ω, z0)
into T := R/Z. If F is an analytic function on Ω , then we call F (π1(Ω)∗-)
character-automorphic with character α, if

F ◦ γ̃ = e2π iα(γ̃ )F, ∀γ̃ ∈ π1(Ω, z∗).

Let H∞
Ω (α) denote the space of analytic character-automorphic functions, F , in Ω

which are uniformly bounded, i.e.,

‖F‖Ω := sup
z∈Ω

|F(z)| < ∞. (1.16)

In his ‘69 paper [31], Widom considered the extremal problem

sup{Re F(x∗) : F ∈ H∞
Ω (α), ‖F‖Ω ≤ 1} (1.17)

under the assumption that E is a finite union of C2 Jordan curves and arcs and showed
existence and uniqueness of the extremizer; let us call this the Widom maximizer. Let
χn denote the character of Bn

E and Wn the Widommaximizer with character χn for the
extremal point x∗ = ∞. If E is the finite union of C2 Jordan curves, Widom showed
that uniformly on compact subsets of Ω

Bn
E Tn − Wn → 0. (1.18)

If such type of convergence holds, we say Tn has Szegő-Widom asymptotics. The cases
of arcs turned out to be essentially harder and for non-real problems only very simple
cases such as one arc of the unit circle [8] are known. IfE ⊂ R the situation is essentially
better, since in this case there are many symmetry properties, which manifests in the
fact that the extremal function is real and allows for the explicit representation of the
type we will derive in (2.11). If E is a finite union of intervals Christiansen, Simon
and Zinchenko [7] showed that Tn has Szegő-Widom asymptotics. In 1971 Widom
[32] also showed that (1.17) has a non-trivial solution as long as Ω is of Parreau–
Widom type. We will define this notion in Sect. 4, but mention at this place that it also
includes infinitely connected domains. Recently Christiansen, Simon, Yuditskii and
Zinchenko [5] proved Szegő-Widom asymptotics for Tn if E ⊂ R such that Ω is a
regular Parreau–Widom domain with Direct Cauchy theorem and this was later also
proved under the same assumptions for residual polynomials [7].

We point out that

(Tn)∞ = n(BE(·,∞))0,
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which makes Bn
E Tn analytic and in fact a normal family. Since by definition

(Fn)∞ ≤ D∞
n ,

in our setting Bn
E should be substituted by the product of complex Green functions

associated to the divisor D∞
n , i.e.

B(n)
E (z) = eiφn

∏
c

D∞
n (c)BE(z, c), (1.19)

where

BE(z, c) = e−GE(z,c)−i G̃E(z,c) (1.20)

and the phase will be specified in Sect. 4. With this modification we prove:

Theorem 1.11 Let Ω = C \ E be a regular Parreau–Widom domain so that the Direct
Cauchy theorem holds in Ω . Assume further that Hypothesis 1.9 holds, and (x∗n )∞n=0
be a sequence in R\E without accumulation points in E. Then Fn admits Szegő-Widom
asymptotics.

In Sect. 4, we will provide necessary definitions to state the above theorem more
precisely asTheorem4.5, and provide a proof. ForChebyshev problemson Jordan arcs,
it is known that it may be necessary to add an additional factor to (1.18); cf. [29, 30].
In particular, for extremal problems which are symmetric with respect to the real line,
this factor is typically 1

2 . The same phenomena can be seen in our asymptotic statement
(4.14). Sincewe chose to consider normalized extremal functions, the additional factor
appears in the asymptotics of the extremal function rather than in the assymptotics of
the extremal value as in [5, Theorem 1.3].

Wewant to highlight that this generalizes the known results in several ways. First of
all, polynomials correspond to the case that D∞

n = nχ{∞} and so the class of functions
that we allow ismore general. Secondly, we allow for a sequence of extremal points x∗n ,
which in particular means that depending on n, Fn might be a residual or a Chebyshev
maximizer.

2 Properties of the Extremal Rational Functions

In this section we study the extremal functions for fixed n. Let us begin by acknowl-
edging that their existence follows by usual arguments. Namely, the leading coefficient
λn and the value Fn(x∗) are continuous functions of polynomial coefficients of Fn Rn .
Since Ln is finite-dimensional, the norm ‖·‖E is mutually equivalent with a norm
made from the polynomial coefficients, so Problem 1.3 is an extremal problem for
continuous maps on the compact unit ball ‖·‖E ≤ 1.

Next, we describe the behavior of extremal functions under PSL(2, R) transforma-
tions. This will require the following claim from [27], for which we provide a short
proof.
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Lemma 2.1 For every z0 ∈ C\R and x ∈ R, there exists t ∈ R such that

maxz∈R

∣∣∣ (z−t)(x−z0)
(z−z0)(x−t)

∣∣∣ = 1 and z = x is the unique maximum.

Proof Let f be a Möbius transformation mapping R to ∂D with f (z0) = 0. Since
Möbius transformations preserve cross-ratios,∣∣∣∣ (x − z0)(z − t)

(x − t)(z − z0)

∣∣∣∣ =
∣∣∣∣ f (x)( f (z)− f (t))

( f (x)− f (t)) f (z)

∣∣∣∣ =
∣∣∣∣ f (z)− f (t)

f (x)− f (t)

∣∣∣∣ .
By choosing t so that f (t) = − f (x), we have∣∣∣∣ (x − z0)(z − t)

(x − t)(z − z0)

∣∣∣∣ =
∣∣∣∣ f (z)− f (t)

f (x)− f (t)

∣∣∣∣ = | f (z)+ f (x)|
2

≤ 1

with equality if and only if f (z) = f (x), i.e., z = x . ��
In the next lemma, we consider the effect of a conformal transformation on the

extremal problems, so we will emphasize dependencies on the poles, the point x∗ and
the set E where appropriate. We denote by Fn(z, E, D∞

n ; x∗) a maximizer for (1.8),
and by L(D∞

n ) the space defined in (1.6). For a divisor D and a a conformal map
f ∈ PSL(2, R) we define the pushforward f∗D = D ◦ f −1. Lemma 2.2 is an analog
of [10, Lemma 2.1] adapted to the L∞ extremal problem (1.8).

We would like to claim that the extremizers move by a conformal map f ∈
PSL(2, R) by

Fn( f (z), f (E), f∗D∞
n ; f (x∗)) = Fn(z, E, D∞

n ; x∗).

However, this statement would be ambiguous until we prove uniqueness of extremiz-
ers, so we have to formulate the claim more carefully:

Lemma 2.2 Let f ∈ PSL(2, R) and let Fn(z, f (E), f∗D∞
n , f (x∗)) be a maximizer of

(1.8) for f∗D∞
n , f (E) and f (x∗). Then Fn( f (z), f (E), f∗D∞

n , f (x∗)) is a maximizer
for (1.8) for D∞

n , E and x∗.

Proof Möbius transformations preserve zeros and their multiplicity, i.e., for any
rational function F and any w ∈ C,

f −1∗ (F)w = (F ◦ f )w.

Therefore, since pushforwards of integral divisors are integral, it follows from (1.6)
that

F ∈ L( f∗D∞
n ) �⇒ F ◦ f ∈ L(D∞

n ). (2.1)

In particular, Fn( f (z), f (E), f∗D∞
n , f (x∗)) ∈ L(D∞

n ). Since Fn(z, f (E), f∗D∞
n ,

f (x∗)) solves the extremal problem on f (E), we have

‖Fn( f (·), f (E), f∗D∞
n , f (x∗))‖E = ‖Fn(·, f (E), f∗D∞

n , f (x∗))‖ f (E) ≤ 1.
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It remains then to show F(z) := Fn( f (z), f (E), f∗D∞
n , f (x∗)) is an extremizer

for n, E, D∞
n and x∗. This will follow from showing that for dn > 0

r( f (z), f (x∗))dn − cnr(z, x∗)dn ∈ L(D∞
n − x∗), (2.2)

r( f −1(z), x∗)dn − 1

cn
r(z, f (x∗))dn ∈ L( f (D∞

n )− f (x∗)), (2.3)

for constants cn > 0. Indeed, given (2.2), (2.3),we suppose for the sakeof contradiction

there is a F̃ ∈ L(D∞
n ) with Re limx→x∗

F̃(x)

r(x,x∗)dn > Re limx→x∗
F(x)

r(x,x∗)dn . Then, since

F̃ ◦ f −1 ∈ L( f∗D∞
n ) by (2.1) and

‖F̃ ◦ f −1‖ f (E) ≤ 1,

we contradict extremality of F(z).
To show (2.2) and (2.3), we note that for the inversions z �→ − 1

z and the affine
transformations z �→ az + b, b ∈ R and a > 0, (2.2) and (2.3) follow by elementary
computations. Since these generate the group PSL(2, R), by writing f in this group
as f = f1 ◦ f2 ◦ f3, with f1, f3 affine, f2 an inversion, and applying the argument
immediately above three times, we have Lemma 2.2. ��

Before we state one of the main theorems of the section, we recall that the set
supp( f )a is called the set of a-points of the function f . Polynomials or entire functions
with real ±1-points play an important role for uniform approximation problems and
in the spectral theory of self adjoint operators; cf. [12, 18]. They are also intimately
related with the notion of a set of alternation.

We will write

E = R \
⋃

i

(ai ,bi ),

where (ai ,bi ) are the gaps of E, indexed by i from a countable indexing set.

Theorem 2.3 Let Fn be a maximizer for Problem 1.3. Let (a,b) be the gap containing
x∗.

(i) Fn has only real generalized zeros.
(ii) Fn is real.

(iii) For any distinct points x1, x2 ∈ R such that D0
n(xi ) ≥ 1, there is a point

y ∈ E ∩ (x1, x2) with |Fn(y)| = 1.
(iv) Fn has only simple generalized zeros, i.e., D0

n ≤ 1.
(v) Fn has at most one generalized zero in each gap.

(vi) Fn has no generalized zeros in the gap (a,b) containing x∗.
(vii) There is a unique extremizer Fn.

(viii) If Fn is not constant, {z ∈ C : Fn(z) ∈ [−1, 1]} ⊂ R. In particular, all
±1-points of Fn lie on R.

123



Constructive Approximation

(ix) If Fn is not constant, let m = deg Fn and let the connected components of
F−1

n ((−1, 1)) be called open bands of En := F−1
n [−1, 1]. Then, there are m

open bands on En, Fn is strictly monotonic on each of them and their endpoints
account for all ±1 points.

(x) Fn(a) = (−1)
∑

c∈(a,x∗) D∞
n (c) and Fn(b) = (−1)

∑
c∈[x∗,b) D∞

n (c),

(xi) For any gap (ai ,bi ) containing a pole ci , either |Fn(bi )| = 1 or |Fn(ai )| = 1.
If D0

n(ci ) = 1, then |Fn(bi )| = |Fn(ai )| = 1.

Remark Note that (iii) is stronger than saying between two zeros of Fn , we find an
extremal point on the set; this statement provides extremal points between a zero and
a pole c j at which Fn has a reduction in order.

Many of the statements in Theorem 2.3 will be proved by Markov correction argu-
ments. We will call a rational function M a Markov correction term if M Fn ∈ Ln and
M(x∗) = 0. We will define the rational function F̃n = (1− εM)Fn , and note that

m̃n(x∗) = Re lim
x→x∗

F̃n(x)

r(x, x∗)dn
= Re lim

z→x∗

Fn(x)

r(x, x∗)dn
= mn(x∗).

If there exists ε so that ‖F̃n‖E < 1, then considering the rescaled function F̃n/‖F̃n‖E ∈
Ln , we see that m̃n(x∗)/‖F̃n‖E > mn(x∗), contradicting the extremality of Fn .

Proof of Theorem 2.3 All the conclusions are invariant under PSL(2, R) maps, so by
Lemma 2.2, it suffices to consider the case x∗ = ∞. In this case, E is a compact subset
of R.

(i): Suppose for the sake of contradiction that there is a generalized zero z0 ∈ C\R.
Define

F̃n(z) =
(

z − t

z − z0

)
Fn(z)

where t is selected so that maxz∈R

∣∣∣ z−t
z−z0

∣∣∣ = 1, using Lemma 2.1 for x = ∞. Since the

maximum at∞ is unique and E is compact, we have ‖F̃n‖E < 1, and by the discussion
above, this would be a contradiction.

(ii): Since all poles and zeros of Fn are real, we may write Fn = AF̃n , where A ∈ C
with |A| = 1 and F̃n is real. It remains to show that A ∈ R. Note that ±F̃n are also
admissible functions for the extremal problem. Since Fn is extremal and F̃n is real,
we have

Re lim
x→x∗

AF̃n(x)

r(x, x∗)dn
= Re lim

x→x∗
Fn(x)

r(x, x∗)dn
≥ ±Re lim

x→x∗
F̃n(x)

r(x, x∗)dn
= ± lim

x→x∗
F̃n(x)

r(x, x∗)dn
.

Since Re limx→x∗
Fn(x)

r(x,x∗)dn �= 0, we conclude that |Re(A)| ≥ 1 and therefore A ∈
{1,−1}.
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(iii): We have supE∩(x1,x2) |Fn| = supE∩[x1,x2] |Fn| = maxE∩[x1,x2] |Fn|. Since Fn

is continuous on E we only have to explain the first equality. We only argue for x1
since x2 follows analogously. We distinguish two cases. If Fn(x1) = 0, then clearly
the sup is not changed by adding x1. If instead D∞

n (x1) > 0, then x1 /∈ E and
(x1, x2) ∩ E = [x1, x2) ∩ E.

Now, we assume for the sake of contradiction that maxE∩[x1,x2] |Fn| < 1. Recalling
that x∗ = ∞ so that D0

n(∞) = 0, define the Markov correction term

M(z; x1, x2) =
{

1
(z−x1)(z−x2)

, x1 < x2
1

(z−x1)(x2−z) , x1 > x2

By distinguishing again the cases Fn(xi ) = 0 and D∞
n (xi ) > 0, we see that in either

case M Fn is continuous on E∩[x1, x2]. Thus, by our assumption we find ε > 0 so that
max[x1,x2]∩E |F̃n| < 1. Since on the rest of E, the norm is lowered, we may conclude
by contradiction.

(iv): Clearly, D0
n(x∗) = 0. With our convention x∗ = ∞ and by (i), all generalized

zeros are in R. Suppose x ∈ R with D0
n(x) ≥ 2. First, we take x /∈ E. We define

the Markov correction term M(z, x) = 1
(z−x)2

. If x /∈ E, z → M(z, x) is continuous

on E and so we may find an ε > 0 such that ‖F̃n‖E < 1. If instead, x ∈ E, then we
conclude as in (iii) by continuity of M Fn that we may find a small enough ε > 0 so
that ‖F̃n‖E < 1.

(v): It follows from (iii) that between any two generalized zeros there must be a
point in E.

(vi): Assume there is a zero in R \ [b, a]. We use the Markov correction term

M(z; x) =
{

1
z−x , x < b
1

x−z , x > a

which is continuous and strictly positive on E. By continuity and compactness, for all
small enough ε > 0, ‖1 − εM‖E < 1, so F̃n = (1 − εM)Fn once again contradicts
extremality.

(vii): Assume that there are two extremizers F1
n , F2

n . By convexity, Tn = 1
2 (F1

n +
F2

n ) is then also an extremizer. Let yi ∈ E be the points given by (iii) with |Tn(yi )| = 1.
We note that by (iv) there are n such points. Then since |F1

n (yi )|, |F2
n (yi )| ≤ 1 and

|Tn(yi )| = 1, F1
n (yi ) = F2

n (yi ) = Tn(yi ) so that F1
n (yi ) − F2

n (yi ) = 0. Define
Hn = F1

n − F2
n and let D0

n denote its divisor of generalized zeros. Then D0
n(x∗) ≥ 1

and D0
n(y j ) ≥ 1 and we conclude that deg D0

n ≥ n + 1. Since Hn ∈ Ln , this implies
Hn ≡ 0 and F1

n = F2
n .

(viii): We write Fn in reduced form as Fn = P
Q , with deg(P) = m and note that

deg Q ≤ m so that deg(Fn) = m. If Fn is nonconstant, we use a counting argument.
Take two consecutive zeros of Fn , x1 and x2. If there is no pole between them, there

must be a critical value y and by (iii), it must obey |Fn(y)| ≥ 1. Separating cases by
whether |Fn(y)| = 1, we either obtain an (at least) double zero of F2

n −1 at y, or zeros
on intervals (x1, y) and (y, x2). Similarly, if there is a pole y ∈ (x1, x2), by continuity
there are ±1-points on intervals (x1, y) and (y, x2).
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Thus, counted with multiplicity, there are at least two ±1-points on this interval.
The m simple zeros of P partition R into m such intervals, so we have at least 2m
total ±1-points. Since deg(Fn) = m, this construction gives all the ±1-points of Fn .
In particular, this now also holds for the set of ±a-points for any a ∈ [−1, 1].

(ix): Let I k
n be the connected components of the open set F−1

n ((−1, 1)). The
previous argument shows that for a ∈ (−1, 1), the ±a-points are simple. Thus, if
Fn(x) = ±a, then F ′

n(x) �= 0, so by continuity, the derivative has the same sign
on each open band I k

n . In particular, Fn(I k
n ) = (−1, 1) for each k and there are m

connected components, F−1
n ((−1, 1)) = ∪m

k=1 I k
n . That the endpoints of I k

n account
for all ±1 points follows from the counting above.

(x): First we show the modulus is 1 at each point. If Fn ≡ 1, this is clear. If
deg(Fn) ≥ 1,wewillmake use of the zeros of Fn . Suppose for the sake of contradiction
that |Fn(b)| < 1. Then, define x := min{y : Fn(y) = 0}, with x ≥ b by (vi). We have
supz∈[b,x] |Fn(z)| < 1 by (ix). Define the Markov correction term M(z, x) = 1

x−z and
note that M ≤ 0 on [b, x]. By the same arguments as (iii) we derive a contradiction.
The same argument at a shows |Fn(a)| = 1.

By (vi), the sign changes on (a,∞) can only occur at the poles contained in this
interval,whichwe order as cn1 < · · · < cnm . By (vi), Fn has no reduction of order at the
poles at the cni , so for a t ∈ (cnm ,∞), sgn(Fn(a)) = (−1)

∑
c∈(a,∞) D∞

n (c) sgn(Fn(t)).
By our definition of r(z, c), Fn > 0 on (cnm ,∞). Since |Fn(a)| = 1 by our work
above, this proves the claim at a. Similar analysis at b, with the modification that the
parity of dn contributes to the sign, completes the proof.

(xi): If Fn is constant, Fn ≡ 1 and the claim is clear. Thus, we take Fn noncon-
stant. By (x), it suffices to consider gaps (ai ,bi ) �= (a,b). If |Fn(ai )| = 1 there is
nothing to prove. If |Fn(ai )| < 1, it follows from monotonicity on the bands and
limx→∞ Fn(x) > 1 that there is a x̃1 < ai with Fn(x̃1) = 0. Similar considerations
hold for bi . If max{|Fn(ai )|, |Fn(bi )|} < 1, let x1 := max{y : y < ci , D0

n(y) = 1}
and x2 := min{y : y > ci , D0

n(y) = 1}. By (iii) there must be y ∈ (x1, x2) ∩ E, with
|Fn(y)| = 1. As in the proof of (x), we conclude from monotonicity on the bands
that either y = ai or y = bi . If D0

n(ci ) = 1, we conclude in the same way that there
is y1 ∈ (x1, c1) and y2 ∈ (c1, x2) with |Fn(y j )| = 1 and finally that y1 = ai and
y2 = bi . ��
Theorem 2.4 Let F ∈ Ln be real and D0

n its generalized zero divisor. Then, any set of
alternation points has at most n + 1− D0

n(x∗) points.

Proof Set m = D0
n(x∗) ≥ 0 and let y j ∈ R\{x∗} be the k points with D0

n(y j ) > 0,
where regardless of its multiplicity each point appears only once. Since deg D0

n = n,
we see that k ≤ n − m. Adding x∗ to this list, we cyclically order the points as
(x∗, y1, . . . , yk). We note that these points cannot be part of an alternating set, as
they either are zeros of F , or coincide with some ci /∈ E or x∗ /∈ E. We also write
y0 = yk+1 = x∗.

Fix 1 ≤ j ≤ k+1.On the interval (y j−1, y j ), F has no generalized zeros, so the sign
changes of F only occur at poles, according to the divisor D∞

n : if (x1, x2) ⊂ (y j−1, y j ),
and x1, x2 are not poles, then

F(x2) = (−1)
∑

c∈(x1,x2) D∞
n (c)F(x1) = (−1)Sn(x2)−Sn(x1)F(x1). (2.4)

123



Constructive Approximation

Thus, x1, x2 cannot be two consecutive points of the same alternation set, because by
the definition of alternation set, this would imply F(x2) = (−1)1+Sn(x2)−Sn(x1)F(x1)
and lead to contradiction. Thus, any alternation set has atmost one point in each interval
(y j−1, y j ) for 1 ≤ j ≤ k + 1, so any alternation set has at most k + 1 ≤ n − m + 1
alternation points. ��

The above theorem justifies the following definition.

Definition 2.5 We say that Fn has a maximal set of alternation points if it has a set of
alternation points of size n + 1.

Theorem 2.6 If Fn is the maximizer for (1.8), then it has a maximal set of alternation
points.

Proof Due toTheorem2.3(vi), D0
n(y) = 0 for all y ∈ (a,b) and therefore, using (1.11)

and Theorem 2.3(ii),(iv), there is a cyclically ordered sequence (b, y1, . . . , yn, a), so
that D0

n(yi ) = 1. By Theorem 2.3(iii), for 2 ≤ j ≤ n, there is a point x j ∈ (y j−1, y j )

and x j ∈ E, so that |Fn(x j )| = 1. We claim that together with xn+1 = a and x1 = b
these points form a maximal set of alternation points.

We start with xn+1 and x1. Let (a,b) be the gap containing x∗. We have

Sn(a) =
∑

c∈(a,x∗)
D∞

n (c).

Thus, it follows directly from Theorem 2.3(x) that xn+1 = a is an alternation point.
Similarly, we see that

Sn(b) =
∑

c∈(b,x∗)
D∞

n (c)

and therefore since deg D0
n =

∑
c D∞

n (c) = n and D∞
n (b) = 0,

n + 1− 1− Sn(b) =
∑
c

D∞
n (c)−

∑
c∈(b,x∗)

D∞
n (c) =

∑
c∈[x∗,b)

D∞
n (c).

Thus, again by Theorem 2.3(x), also x1 = b is an alternation point in the above sense.
Now for j ≥ 1 take x j , x j+1 and y j ∈ (x j , x j+1) and assume that x j is an alterna-

tion point. Note that all sign changes of Fn correspond either to a pole of Fn or to y j .
Thus,

Fn(x j ) = (−1)
1+∑

c∈(x j ,x j+1) D∞
n (c)

Fn(x j+1). (2.5)

This is easily seen if D∞
n (y j ) = 0. If D∞

n (y j ) > 0, then (Fn)∞(y j ) = D∞
n (y j )− 1

and (2.5) still holds. On the other hand

Sn(x j )− Sn(x j+1) =
∑

c∈(x j ,x j+1)

D∞
n (c).
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Therefore, x j+1 is also an alternating point. Thus, by induction we conclude that
{xi }n+1

i=1 form a maximal set of alternation points for Fn . ��
We also have a form of converse to Theorem 2.6, which we prove as the following

theorem.

Theorem 2.7 If F ∈ Ln is real and has a maximal alternation set, then F is the unique
maximizer for Problem 1.3.

Proof Let F ∈ Ln be real and suppose that it has a maximal set of alternation points
{x1, . . . , xn+1}. By relabeling, we assume the cyclic ordering (x∗, x1, . . . , xn+1). By
Theorem 2.4, if F has an alternation set with n + 1 points, then (F)∞(x∗) = dn .
Therefore, we can define limx→x∗ F(x)/r(x, x∗)dn =: αn ∈ R \ {0}. It is convenient
to rephrase our extremal problem: Fn solves (1.3) if and only if F̃n := 1

λn
Fn solves

the dual problem

inf{‖F̃n‖E : lim
x→x∗

F̃n(x)

r(x, x∗)dn
= 1, F̃n ∈ Ln}. (2.6)

By this duality and Theorem 2.3(vii), it will suffice to show F̃ := 1
αn

F is also

an extremizer for (2.6); ‖F̃‖E = ‖F̃n‖E. Suppose that ‖F̃‖E > ‖F̃n‖E. We define
H̃n = F̃ − F̃n and denote its generalized zero divisor by D0

n . Our normalization
implies that D0

n(x∗) ≥ 1. Since sgn(Hn(x j )) = sgn(F(x j )), we have sgn(Hn(x j )) =
(−1)n+1− j−Sn(x j ) for 1 ≤ j ≤ n+1. By the computation (2.4), we conclude that there
must be y j ∈ (x j , x j+1) with D0

n(y j ) ≥ 1 for 1 ≤ j ≤ n. Thus, deg(D0
n) ≥ n + 1,

which contradicts Hn ∈ Ln . ��
In particular, the proof of Theorem 1.6 is now complete and we may prove

Corollary 1.8.

Proof of Corollary 1.8 We let {x1, . . . , xn+1} be an alternation set for Fn and the point
x∗, with cyclic ordering (x∗, x1, . . . , xn+1), wherewe recall that x1 = a and xn+1 = b.
By definition of Sn we see that for 1 ≤ � ≤ n we have

Fn(x�)

Fn(x�+1)
= (−1)

1+∑
c∈(x�,x�+1) D∞

n (c)
. (2.7)

However,

Fn(a)
Fn(b)

= (−1)
∑

c∈(a,b) D∞
n (c), (2.8)

which is easier to see by using the expressions in Theorem 2.3(x). The difference
between (2.7) and (2.8) is manifested in the fact that Sn is anchored at x∗ ∈ (a,b).
Moreover, by Theorem 1.6, if there exists a set {x1, . . . , xn+1}which can be cyclically
ordered so that Fn satisfies (2.7) and (2.8), then for any x̃∗ ∈ (a,b) up to a factor ±1,
Fn is the maximizer of (1.8).
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Denote by x∗j a point in the gap (a j ,b j ). Let S j
n (x) := ∑

c∈R\{x j∗ } D∞
n (c)χ[x j∗ ,c)(x).

There is 1 ≤ k ≤ n so that x j∗ ∈ (xk, xk+1). Let us order the yi with D0
n(yi ) = 1

cyclically as (a,b, y1, . . . , yn). The assumption D0
n = 0 on (a j ,b j ) implies a j ,b j ∈

(yi , yi+1) for some 1 ≤ i ≤ n − 1. By (ix), a j and b j are the only points in (yi , yi+1)

with |Fn| = 1, and since there is exactly one of the xi in each of the (yi , yi+1), one
and only one of a j and b j is in the alternation set {x1, . . . , xn+1}. Without a loss of
generality we take xk = a j . We now claim the set {x1, . . . , xk,b j , xk+1, . . . xn} will
form our alternation set. Since S j

n is now anchored at x∗j ∈ (a j ,b j ), we need to check

(2.8) for the gap (a j ,b j ). From the assumption that D0
n = 0 on (a j ,b j ) it follows that

Fn(a j )

Fn(b j )
= (−1)

∑
c∈(a j ,b j )

D∞
n (c)

.

By the assumption that {x1, . . . , xn+1} form an alternation set (for Sn), (2.7) (for
S j

n ) is clearly satisfied for {x1, . . . , xk} and for {xk+1, . . . , xn}. Using again that
{x1, . . . , xn+1} form an alternation set and that a j = xk , we have

Fn(xk+1) = (−1)
1+∑

c∈(xk ,xk+1) D∞
n (c)

Fn(xk) = (−1)
1+∑

c∈(xk ,xk+1) D∞
n (c)

(−1)
∑

c∈(a j ,b j )
D∞

n (c)
Fn(b j )

= (−1)
1+∑

c∈(b j ,xk+1) D∞
n (c)

Fn(b j ).

Thus, (2.7) is also satisfied for xk+1 and b j . Similarly we can check (2.7) for xn and
x1 and conclude that up to a factor of ±1 Fn is also extremal for x∗j . ��
Remark In the above argument, one could have removed x1 and kept xn+1 to form an
alternation set for x j∗ .

Next, we describe when the extremizer is constant:

Proof of Theorem 1.7 Suppose E takes the above form. Without a loss of generality
we assume that (x∗, c1, . . . , cn) are cyclically ordered. Then, (b0, a0, x1, . . . , xn−1),
where x� ∈ E∩ (c�, c�+1) for 1 ≤ � ≤ n− 1 forms a set of alternation for Fn ≡ 1. By
Theorem 2.7, Fn is the maximizer for (1.8).

Suppose now the set is not of the above form. If there is a c j with D∞
n (c j ) ≥ 2,

by (iv), the extremizer Fn is nonconstant. If there are two distinct poles ci and c j in a
single gap, then Fn cannot be constant by (v). In either case, Fn is nonconstant. ��

We record a final corollary of Theorem 2.6.

Corollary 2.8 If the extremal function Fn is not constant, then deg Fn ≥ � n+1
2 �.

Proof By Theorem 2.6, Fn has at least � n+1
2 � points with |Fn| = 1 with the same

sign. Thus, if Fn is nonconstant, it has degree at least � n+1
2 �, and we can have at most

� n−1
2 � cancellations. ��
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The set En = F−1
n ([−1, 1]) is called the n extension of E. Note that by definition

it is an extension, i.e., E ⊂ En . Theorem 2.3, particularly the locating of ±1 points in
(viii) allows us to characterize this set with more specificity in the following theorem.

We recall our ternary order, and let ui , vi ∈ R\E̊with vi ∈ [ai ,bi ] and ui ∈ [ai , vi ].
Then

Theorem 2.9 For Fn nonconstant, the n extension of E is of the form

En = E ∪
⋃
i≥1

[ui , vi ]

with [ui , vi ] ⊆ [ai ,bi ].
The following cases are possible:

(1) The gap remains unchanged, corresponding to ui = vi = ai .
(2) E is extended on one edge, corresponding to ai = ui and vi �= ui , vi �= bi , or on

the other side, vi = bi and ui �= ai , ui �= vi .
(3) An internal interval is added, corresponding to [ui , vi ] ⊂ (ai ,bi ), ui �= vi .
(4) The gap (ai ,bi ) may close, corresponding to ai = ui and bi = vi .

Moreover, in the following cases there is not extension into a gap:

(i) If x∗ ∈ (ai ,bi ), then this gap remains unchanged, i.e., ui = vi = ai .
(ii) If there is a pole ci ∈ (ai ,bi ) and D0

n(ci ) = 1, then this gap remains unchanged,
i.e., ui = vi = ai .

Remark (i) Aswewill see in the proof, for gaps (ai ,bi ) containing poles of Fn , which
is guaranteed for D∞

n (ci ) ≥ 2 by (iv), only the first three behaviors are possible.
(ii) If there is an interval added to En as in (3) above, then this is always related

to a zero xi of Fn and moreover |Fn(ai )| = |Fn(bi )| = 1. Clearly, if this zero
approaches a pole, the interval around it becomes smaller. In this sense (ii) of the
above theorem can be viewed as a limit of such situations, where the additional
interval degenerates to a point.

Proof Applying conformal invariance of the setting, we assume again that x∗ = ∞
and E is a compact subset of R. Since we will prove (i) independently, we can assume
that all extensions occur in bounded gaps.We first note that any internal interval cannot
degenerate to a point, i.e. when ui = vi in (3), since due to 2.3(ix) there are m open
bands and their endpoints account for all ±1 points. Thus, if the extension of the gap
is not of the above form, then there would either be more then one internal interval, an
extension on both sides or an extension combined with an internal interval. All cases
imply that there are open bands Ik = (y−k , y+k ), k = 1, 2, so that y+1 , y−2 /∈ E. Let
xk denote the simple zero of Fn on these open bands. Using that |Fn| < 1 on Ik and
y+1 , y−2 /∈ E, we see that max[x1,x2]∩E |Fn| < 1, contradicting Theorem 2.3(iii).

Let us now prove (i): Due to (x) and (ix) of Theorem 2.3, an extensionwould contain
an open band that lies entirely in (ai ,bi ). Therefore in particular, this would lead to a
zero of Fn on the extremal gap contradicting (vi) of Theorem 2.3.

It remains to prove (ii): In this case again due to (xi) and (ix) of Theorem 2.3,
this would lead to an open band that lies entirely in (ai ,bi ) forcing Fn to have an
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additional zero in this gap. But since already Dn(ci ) = 1, this would contradict (v) of
Theorem 2.3. ��

In the following let us assume that Fn is nonconstant so thatC\En is Greenian. Note
that due to Theorem 2.9(3), En is a finite union of proper intervals and in particular is
regular for the Dirichlet problem. We define

Bn(z) = eiφn
∏
c

(Fn)∞(c)BEn (z, c), (2.9)

and normalize the phase of Bn by the condition

lim
x→x∗

Bn(x)r(x, x∗)dn > 0. (2.10)

Recall that in general BEn (z, c) define multivalued functions. However, we will show
that their product Bn(z) is in fact single valued in C \ En .

Theorem 2.10 Bn is a single-valued analytic function on C\En and

Fn(z) = 1

2

(
Bn(z)+ 1

Bn(z)

)
. (2.11)

Proof Recall that En = {z ∈ C : Fn(z) ∈ [−1, 1]}. Therefore, since the Joukowsky
map J (ζ ) = 1

2

(
ζ + 1

ζ

)
maps D conformally onto C \ [−1, 1], the function

Ψn(z) = J−1(Fn(z)),

is well defined and single-valued in C\En . Moreover, for x ∈ En , limz→x |Ψn(z)| = 1
and Ψn(z) has a zero of multiplicity (Fn)∞(c) at each c. Thus, we conclude by the
maximum principle that

− log |Ψn(z)| =
∑
c

(Fn)∞(c)GEn (z, c) = − log |Bn(z)|.

Thus, by adding the complex conjugate, Bn is defined up to a unimodular constant c.
Finally,

0 < lim
x→x∗

Fn(x)

r(x, x∗)dn
= 1

2
lim

x→x∗

(
cBn(x)

r(x, x∗)dn
+ 1

cBn(x)r(x, x∗)dn

)

= 1

2
lim

x→x∗

1

cBn(x)r(x, x∗)dn
.

Using the normalization (2.10), we conclude c = 1 and obtain (2.11). ��
This has the following consequence:
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Lemma 2.11 Let Fn be represented as in (2.11) and let In be an open band of En. Then

1 =
∑
c

(Fn)∞(c)ωEn (In, c). (2.12)

Proof Recall that

Fn(z) = J (Bn(z)) (2.13)

and that Fn is strictly monotonic on In . That is, either Fn increases from −1 to 1 or
decreases from 1 to−1 strictly monotonically. Let In = (a, b). Since J : ∂D∩C± →
(−1, 1) bijectively, it follows from the definition of In and (2.13) that

| arg Bn(b)− arg Bn(a)| = π.

By using the Cauchy-Riemann equations, we get

arg Bn(b)− arg Bn(a) =
∫ b

a

∂Gn(x)

∂n
dx .

On the other hand

ωEn (dx, c) = 1

π

∂GEn (x, c)
∂n

dx .

Thus, we get

arg Bn(b)− arg Bn(a) = π
∑
c

(Fn)∞(c)ωEn (In, c)

and the claim follows. ��

We finish this section with a Bernstein-Walsh lemma for rational functions.

Lemma 2.12 Let K ⊂ C be a compact, nonpolar set such that C \ K is connected.
Let h be a meromorphic function on C Then,

|h(z)|
‖h‖K

≤ e
∑

c(h)∞(c)G K (z,c) (2.14)

If we assume in addition that K ⊂ R and that h is real, then

|h(z)|
‖h‖K

≤ 1

2

(
e
∑

c(h)∞(c)G K (z,c) + e−
∑

c(h)∞(c)G K (z,c)
)

. (2.15)
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Proof For (2.14) we follow the standard proof of the Bernstein-Walsh lemma. Set
H = h/‖h‖K and consider F(z) = log |H(z)| − ∑

c(h)∞(c)G K (z, c). Then, F is
subharmonic in Ω = C \ K and for q.e. ζ ∈ ∂Ω we have lim supz→ζ F(z) ≤ 0.
Moreover, if Vc are vicinities of the points with (h)∞(c) > 0 and V = ∪cVc, then
log |H(z)| is subharmonic on C\V and thus bounded above by [19, Theorem 2.1.2].
Since the logarithmic pole on Vc is canceled, F is also bounded above on V and we
conclude from the maximum principle [14, Theorem 8.1] that F(z) ≤ 0 in Ω .

Assume that H is real and that K is real. Define K H = {z ∈ C : H(z) ∈ [−1, 1]},
but note that K is not necessarily a subset of R. However, using that H is real, we
have that K ⊂ K H . Now, as in the proof of Theorem 2.10 we see that

H(z) = 1

2

(
eG H (z)+i G̃ H (z) + e−(G H (z)+i G̃ H (z))

)
, G H (z) =

∑
c

(h)∞(c)G K H (z, c).

Let us also put G(z) = ∑
c(h)∞(c)G K (z, c�). Then it follows from the monotonicity

of Green functions with respect to the domain that for z ∈ C \ K H , we have

|H(z)| =
∣∣∣cosh (

G H (z)+ i G̃ H (z)
)∣∣∣ ≤ cosh G H (z) ≤ cosh G(z).

Note that for z ∈ K H\K , G(z) > 0 and thus (2.15) also holds for such z. This finishes
the proof. ��

We point out that (2.14) is an analog of the standard Bernstein-Walsh lemma,
whereas (2.15) is a fairly recent improvement of Schiefermayr for real polynomial
problems [23]. Note that this also implies that (2.15) holds for x∗ ∈ R\K , without the
extra assumption on hn to be real. This follows from Theorem 2.3, where we showed
that the residual extremizer is always real.

3 Root Asymptotics

We now turn to the study of the limiting behavior of Fn as n → ∞. In this section,
we will often assume Hypothesis 1.9 holds, and that (x∗n ) is a sequence in R \ E
without accumulation points in E. We note that the first part of Hypothesis 1.9 implies
suppμ ∩ E = ∅. Let further νn be the normalized counting measure of generalized
zeros of Fn , i.e,

νn = 1

n

∑
x

D0
n(x)δx .

We define the family of functions

hn(z) = 1

n
log |Fn(z)| (3.1)
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and note that hn is subharmonic in C\suppD∞
n ; in particular, all functions hn are

subharmonic in

ΩC = C \ KC.

We start with an upper estimate:

Lemma 3.1 Assume Hypothesis 1.9 holds. Then, for any z ∈ C \ R we have

lim sup hn(z) ≤
∫

GE(z, x)dμ(x). (3.2)

Proof Due to Lemma 2.12 and the definition of μn we have

hn(z) ≤
∫

GE(z, x)dμn(x).

On the other hand, since μn → μ and by continuity of GE(z, y) on KC we have

lim
n→∞

∫
GE(z, x)dμn(x) =

∫
GE(z, x)dμ(x).

��
We continue with some facts about potentials.

Lemma 3.2 Let E � R be closed and not polar so that Ω = C \ E is Greenian and μ

be a probability measure supported on R with suppμ∩ E = ∅. Then
∫

GE(z, x)dμ(x)

defines a positive superharmonic function in Ω and a harmonic function in Ω \suppμ.
Moreover, as a harmonic function, it has a unique subharmonic extension to C\suppμ,
which vanishes q.e. on E.

Proof If suppμ ⊂ R, it follows from [21, Theorem II.5.1] and the minimum principle
for superharmonic functions that

∫
GE(z, x)dμ(x) defines a positive superharmonic

function in Ω and a harmonic function in Ω \ suppμ that vanishes q.e. on E. In
particular, locally in vicinities of E it is subharmonic and vanishes away from a polar
set. Thus, by [1, Theorem 5.2.1.], for ζ ∈ E∫

GE(ζ, x)dμ(x) = lim sup
z→ζ

∫
GE(z, x)dμ(x)

defines the unique subharmonic extension to Ω \ suppμ; since all claims are
conformally invariant, the general case follows. ��
Lemma 3.3 Assume Hypothesis 1.9. Then, the set KC intersects only finitely many
open gaps.

Proof KC is a closed subset of R, so it is compact. It is contained in R \ E, so its cover
by the open sets (a j ,b j ) has a finite subcover; in other words, KC only intersects
finitely many gaps. ��
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We obtain immediately the following corollary:

Corollary 3.4 Assume Hypothesis1.9. Then, for n sufficiently large, Fn is non-constant.

Proof Because D0
n ≤ 1 for any gap and there is at most one generalized zero per gap

due to Theorem 2.3(iv),(v), the claim follows by Lemma 3.3 and deg D∞
n = n. ��

Since we are interested in asymptotics of Fn as n →∞, we assume from now on that
Fn is non-constant.

Lemma 3.5 Fix an open set O ⊂ R \ E so that μ(O) > 0. Then

lim
n→∞

∑
c∈O

D∞
n (c) = +∞. (3.3)

Proof By definition,

μn(O) = 1

n

∑
c∈O

D∞
n (c).

By the Portmanteau theorem, lim infn→∞ μn(O) ≥ μ(O) > 0, so

lim inf
n→∞

1

n

∑
c∈O

D∞
n (c) > 0

which implies (3.3). ��
The following analog of Koosis’s formula for the Martin or Phragmén Lindelöf

function [16, Theorem on page 407] will be very useful. It was already used in [5,
Proposition 4.3].

Lemma 3.6 Let E1 ⊂ E2 ⊂ R so that E1 is not polar and let c ∈ R \ E2. Then,

GE1(z, c)− GE2(z, c) =
∫
E2\E1

GE1(z, x)ωE2(dx, c). (3.4)

Proof Since (3.4) is conformally invariant, by applying a conformal map we can
assume that ∞ ∈ E1, i.e., Ω1 = C \ E1 ⊂ C. Define also Ω2 = C \ E2. Since the
logarithmic pole at c is canceled, GE1(z, c)−GE2(z, c) defines a superharmonic func-
tion onΩ1 which is bounded. Moreover, its Riesz measure is given by ωE2(dx, c)|Ω1.

Since E1 ⊂ E2 it follows by the maximum principle that GE1(z, c) − GE2(z, c) ≥ 0.
Thus, in particular it has a nonnegative subharmonic minorant in Ω1 and it follows by
the Riesz decomposition theorem that

GE1(z, c)− GE2(z, c) =
∫

Ω1

G E1(z, x)ωE2(dx, c)+ u(z),

123



Constructive Approximation

where u is the greatest harmonic minorant of GE1(z, c)− GE2(z, c). We have already
seen that u ≥ 0. On the other hand, since E1 is the boundary for Ω1 and Ω2 it follows
that for q.e. x ∈ E1 we have

lim sup
z→x

u(z) ≤ lim sup
z→x

(GE1(z, c)− GE2(z, c)) = 0.

Thus, u is a bounded harmonic function in Ω1 which vanishes q.e. on E1. It follows
by the maximum principle [14, Corollary 8.3] that u = 0 and we obtain (3.4). ��

Compared to the standard Chebyshev problem, we encounter a technical difference
for residual extremal functions. Let (ai ,bi ) be a gap so that (3.3) is satisfied for
O = (ai ,bi ). We want to estimate GEn (z, c) for c ∈ (ai ,bi ). But since (ai ,bi ) is
not necessarily the extremal gap, there can be an extension (ui , vi ) in this gap, which
intuitively makes GEn (z, c) smaller if [ui , vi ] is close to c. However, we have already
encountered in Theorem 2.9(ii), that a cancellation of a pole can be regarded as a
degenerated internal interval. Thus, we are led to expect that an additional interval
can have no more “effect” than reducing the number of Green functions in the sum by
one. This is the content of the following lemma:

Lemma 3.7 Let En and ui , vi be defined as in Theorem 2.9. Fix a gap (ai ,bi ) and
define Ei

n = En \ (ai ,bi ). Let z ∈ C\En and (Fn)∞(z) = 0. Then there is a t ∈ [ai ,bi ]
such that GE(t, z) = maxx∈[ai ,bi ] GE(x, z) and we have

∑
c

(Fn)∞(c)GEn (z, c) ≥
∑
c

(Fn)∞(c)GEi
n
(z, c)− GE(z, t). (3.5)

In particular, if z /∈ (ai ,bi ), then

lim
n→∞

∑
c

(Fn)∞(c)GEi
n
(z, c) = ∞ �⇒ lim

n→∞
∑
c

(Fn)∞(c)GEn (z, c) = ∞. (3.6)

Proof If z ∈ (ai ,bi ), then t = z and (3.5) is trivial. Thus, let z /∈ (ai ,bi ).
Since En is a finite union of intervals it is clearly not polar and putting En \ Ei

n =
[ui , vi ], we obtain from Lemma 3.6 that

GEi
n
(z, c)− GEn (z, c) =

∫ vi

ui

GEi
n
(z, x)ωEn (dx, c). (3.7)

By [19, Theorem 2.1.2] a subharmonic function attains its maximum on compacts and
thus t is well defined. Define

ρn(dx) =
∑
c

(Fn)∞(c)ωEn (dx, c),

and note that it follows from Theorem 2.9 and Lemma 2.11 that ρn([ui , vi ]) ≤ 1.
Moreover, by the maximum principle

GEi
n
(z, x) ≤ GE(z, x).
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Thus,

∑
c

(Fn)∞(c)
∫ vi

ui

GEi
n
(z, x)ωEn (dx, c)

=
∫ vi

ui

GEi
n
(z, x)ρn(dx) ≤

∫ vi

ui

GE(z, x)ρn(dx) ≤ GE(z, t).

Combining this with (3.7) yields (3.5). ��
By the representation (2.11), we have

hn(z) = −1

n
log |Bn(z)| − 1

n
log 2+ 1

n
log |1+ Bn(z)2|. (3.8)

The next lemma shows that the the asymptotics of hn for n →∞ are determined by
the term − 1

n log |Bn(z)|. In fact, we even prove a stronger statement, which will be
needed in Sect. 4.

Lemma 3.8 Suppose Hypothesis 1.9 holds. Then, uniformly on compact subsets of
C \ R we have

lim
n→∞ log

∣∣∣1+ Bn(z)
2
∣∣∣ = 0. (3.9)

If we pass to a subsequence such that lim�→∞ x∗n�
= x∗∞ and (a,b) denotes the gap

containing x∗∞, then also for z ∈ (a,b)

lim
�→∞ log

∣∣∣1+ Bn�
(z)2

∣∣∣ = 0. (3.10)

Proof Consider Bn as an analytic single-valued function on C+ or C− and note that
0 < |Bn(z)| < 1. Thus, log

∣∣1+ Bn(z)2
∣∣ = Re log(1 + Bn(z)2) defines a family of

harmonic functions which is uniformly bounded from above. Thus, by the Harnack
principle, the family is precompact in the space of harmonic functions together with
the function which is identically −∞. Therefore, it suffices to show that pointwise
for fixed z every subsequence has a subsequence so that (3.9) holds. Let us pass to a
subsequence so that lim�→∞ x∗n�

= x∗∞ and let (a,b) denote the gap containing x∗∞.
If necessary, we pass to a further subsequence so that xn�

∈ (a,b) for all � > 0. Since
for |z| < 1

| log(|1+ z|)| = |Re(log(1+ z))| ≤ | log(1+ z)| =
∣∣∣∣
∫ 1

0

z

1+ zt
dt

∣∣∣∣ ≤ |z|
1− |z| ,

it suffices to show that

lim
�→∞ |Bn�

(z)| = 0.
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By (2.9) and (1.20) this is equivalent to

lim
�→∞

∑
c

(Fn�
)∞(c)GEn�

(z, c) = +∞. (3.11)

Since E∩KC = ∅, we find a gap (ai ,bi ) and ε > 0 so that μ((ai + ε,bi − ε)) > 0.
Thus, by Lemma 3.5 we have

lim
�→∞

∑
c∈(ai+ε,bi−ε)

D∞
n�

(c) = +∞. (3.12)

Note that it could be that (ai ,bi ) = (a,b), which causes no problems in the following.
Set Ei = R\((a,b)∪(ai ,bi )) and Ei

n�
= En�

\(ai ,bi ). ByTheorem2.9(i), Ei
n�
⊂ Ei ,

so the maximum principle yields

GEi (z, c) ≤ GEi
n�

(z, c). (3.13)

Fix z ∈ C+ ∪ C− ∪ (a,b) and note that lower semicontinuity implies

0 < δ = min
c∈[ai+ε,bi−ε] GEi (z, c).

Then, by Theorem 2.3(v)

∑
c∈(ai+ε,bi−ε)

(Fn�
)∞(c)GEi (z, c) ≥ δ

(
− 1+

∑
c∈(ai+ε,bi−ε)

D∞
n�

(c)
)

.

Thus, by (3.12) we obtain

lim
�→∞

∑
c∈(ai+ε,bi−ε)

(Fn�
)∞(c)GEi (z, c) = ∞. (3.14)

Since by positivity of the Green function

∑
c

(Fn�
)∞(c)GEi (z, c) ≥

∑
c∈(ai+ε,bi−ε)

(Fn�
)∞(c)GEi (z, c)

we obtain together with (3.13) that

lim
�→∞

∑
c

(Fn�
)∞(c)GEi

n�
(z, c) = ∞.

By an application of Lemma 3.7 we obtain (3.11) which concludes the proof. ��
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Lemma 3.9 Assume Hypothesis 1.9Then, for z ∈ C \ R, we have

lim inf
n→∞

1

n
log |Fn(z)| ≥ 0. (3.15)

Proof Fix z ∈ C \R and recall (3.8). Noting that |Bn(z)| ≤ 1, the claim follows from
Lemma 3.8. ��

In contrast to the classical polynomial setting, our limits will be described by
the difference of two potentials, one corresponding to the zeros of Fn , leading to a
subharmonic part and one corresponding to the poles leading to a superharmonic part.
Since in the following considerations we will work with the Riesz measures for both
of them, there is no natural choice of a “coordinate system” and it will be convenient
to apply conformal maps to logarithmic potentials. For a probability measure ν with
suppν � R and z∗ ∈ R \ suppν, let us introduce the notation

Φν(z, z∗) =
∫

K (x, z; z∗)dν(x),

where

K (x, z; z∗) =
{
log

∣∣∣1− z−z∗
x−z∗

∣∣∣ , z∗ �= ∞,

log |z − x |, z∗ = ∞.

It is straightforward to see that if z1, z2 ∈ R \ suppν, then there is β ∈ R so that

Φν(z, z1) = β +Φν(z, z2).

Lemma 3.10 Let ν be a probability measure on R, suppν ⊂ E and f ∈ PSL(2, R). If
f (∞) = ∞, then

Φν(z, z∗) = Φ f∗ν( f (z), f (z∗)).

Otherwise,

Φν(z, z∗) = Φ f∗ν( f (z), f (z∗))−Φ f∗δ∞( f (z), f (z∗)).

Proof Let us first assume that f (∞) = ∞, i.e., f (z) = az + b with a �= 0. Then we
have

1− z − z∗
x − z∗

= 1− f (z)− f (z∗)
f (x)− f (z∗)

.

Thus, the claim follows by the transformation rule for pushforward measures.
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Let now f (∞) �= ∞. Since f preserves cross-ratios, we get

1− z − z∗
x − z∗

= x − z

x − z∗
= f (x)− f (z)

f (x)− f (z∗)
f (z∗)− f (∞)

f (z)− f (∞)

=
(
1− f (z)− f (z∗)

f (∞)− f (z∗)

)−1 (
1− f (z)− f (z∗)

f (x)− f (z∗)

)
.

Noting that f∗δ∞ = δ f (∞), again the claim follows by applying the transformation
rule for pushforward measures. ��
Lemma 3.11 The measures νn are a precompact family with respect to weak conver-
gence on C(R). Any accumulation point ν = lim�→∞ νn�

is a probability measure
and suppν ⊂ E.

Proof Since deg D0
n = n, precompactness follows by the Banach-Alaoglu theorem

and any accumulation point is a probability measure on R. Let (a,b) be a connected
component of R\E. Let us prove that ν((a,b)) = 0. By Möbius invariance, it suffices
to assume that (a,b) is a bounded subset of R. Due to Theorem 2.3 (vi), there is at
most one generalized zero in (a,b), thus νn�

((a,b)) ≤ 1
n�

and by the Portmanteau
theorem ν((a,b)) = 0 and suppν ⊂ E. ��

In the followingwewill need statements also for a subsequence (hn�
)∞�=1. Therefore,

for a fixed subsequence let us define

K ′ =
⋃
�≥1

suppD∞
n�

, and ΩK ′ = C \ K ′, (3.16)

so that hn�
is subharmonic on ΩK ′ for all �. Since limn→∞ μn = μ, we have for

any subsequence (and therefore any K ′), that suppμ ⊂ K ′ ⊂ KC and therefore
ΩC ⊂ ΩK ′ ⊂ C\suppμ.

If D0
n(z1∗) = D∞

n (z2∗) = 0, then by factoring Fn we see that there is βn ∈ R so that

hn(z) = βn +Φνn (z, z1∗)−Φμn (z, z2∗). (3.17)

Theorem 3.12 Assume Hypothesis 1.9 and pass to a subsequence so that lim� νn�
= ν,

lim� x∗n�
= x∞ and lim� βn�

= β ∈ R ∪ {−∞,+∞}. Then, in fact β ∈ R and for
z∗ /∈ KC we have uniformly on compact subsets of C \ R

lim
�→∞ hn�

(z) = β +Φν(z, x∞)−Φμ(z, z∗) =: h(z). (3.18)

In particular, h extends to a positive superharmonic function on C \ E and to a
subharmonic function on C \ suppμ. Moreover, for q.e. every z ∈ ΩK ′

lim sup
�→∞

hn�
(z) = β +Φν(z, x∗∞)−Φμ(z, z∗).
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Proof Let (a,b) denote the gap containing x∞ and let us assume that � is big enough
so that all x∗n�

are in (a,b). Due to Theorem 2.3(vi), νn�
((a,b)) = 0. Thus, we can

write

hn�
(z) = βn�

+Φνn�
(z, x∗∞)−Φμn�

(z, z∗). (3.19)

Since K (·, z, x∞) is continuous on suppνn�
⊂ R\(a,b) and K (·, z, z∗) is continuous

on R\K ′, we get

lim
�→∞Φνn�

(z, x∗∞) = Φν(z, x∗∞), lim
�→∞Φμn�

(z, x∗∞) = Φμ(z, x∗∞).

Since, for z0 ∈ C+, Φν(z0, x∗∞),Φμ(z0, z∗) ∈ R the upper and lower estimates (3.2)
and (3.15) imply that β ∈ R. In fact, convergence is uniform on compact subsets of
C \R: since supp(νn�

), supp(μn�
) ⊂ R for all � and all measures are normalized, the

estimate

log

∣∣∣∣ x − z1
x − z2

∣∣∣∣ ≤ log

(
1+ |z1 − z2|

dist(z2, R)

)
≤ |z1 − z2|

dist(z2, R)
, z1, z2 ∈ C \ R

implies uniform equicontinuity of the potentials
∫
log

∣∣∣1− z−x∗∞
x−x∗∞

∣∣∣ dνn�
(x) and∫

log
∣∣∣1− z−z∗

x−z∗

∣∣∣ dμn�
(x) on compact subsets ofC\R, and the Arzelà–Ascoli theorem

implies uniform convergence on compacts.
By applying a conformal map f ∈ PSL(2, R) and Lemma 2.2 we assume that

∞ ∈ (a,b) so that E and K ′ are compact subsets of R.
We note that Φρ , for ρ = μ, ν, are subharmonic in C and harmonic in C \ suppρ.

Thus, we only need to argue why h is harmonic at∞. Since suppμ and E are bounded
and μ, ν are probability measures, we have

Φρ(z) = log |z| + O(1) (3.20)

as z →∞ and therefore, h(z) = O(1) there and h has a harmonic extension to∞.
Finally, for z ∈ ΩK ′ \{∞}, K (·, z, z∗) is continuous on K ′ and thus

lim
�→∞Φμn�

(z, z∗) = Φμ(z, z∗). (3.21)

By the upper envelope theorem for q.e. z ∈ C

lim sup
�→∞

Φνn�
(z, x∗∞) = Φν(z, x∗∞). (3.22)

Combining (3.21) and (3.22), for q.e. z ∈ ΩK ′ we have

lim sup
�→∞

hn�
(z) = lim

�→∞βn�
+ lim sup

�→∞
Φνn�

(z, x∗∞)− lim
�→∞Φμn�

(z, z∗) = h(z).

��
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Lemma 3.13 Assume Hypothesis 1.9. Then, for z ∈ C \ R, we have

lim inf
n→∞

1

n
log |Fn(z)| ≥

∫
GE(z, x)dμ(x).

Proof By applying a conformal map f , we assume ∞ ∈ E so that Ω ⊂ C. Fix
z ∈ C \ R and let n� be such that

lim
�→∞ hn�

(z) = lim inf
n→∞ hn(z)

and

lim
�→∞ hn�

(z) = h(z) = β +Φν(z, x∞)−Φμ(z, z∗)

in the sense of Theorem 3.12. Thus, h defines a positive superharmonic function on
Ω and

−Δh = ΔΦμ(z, z∗) = 2πμ.

By the Riesz decomposition theorem [1, Theorem 4.4.1], we have

h(z) =
∫

GE(z, x)dμ(x)+ u(z),

where u(z) is the greatest harmonic minorant of h. Since h is positive, it follows that
u ≥ 0. Thus,

h(z) ≥
∫

GE(z, x)dμ(x)

and the claim follows. ��
We can now prove the root asymptotics of Fn and convergence of generalized zero

counting measures:

Proof of Theorem 1.10 Root asymptotics follow by combining Lemma 3.1 and
Lemma 3.13.

By conformal invariance,we assume that∞ ∈ suppμ so thatΩμ := C\suppμ ⊂ C
and E is compact in R. Due to Lemma 3.11 the family {νn} is precompact and we can
consider a weakly convergent subsequence ν = lim j→∞ νn j . Moreover, by Lemma
3.2,

∫
GE(z, x)dμ(x) defines a subharmonic function inΩμ. Let us compute its Riesz

measure. Take φ ∈ C∞
c (Ωμ) and compute

∫∫
GE(z, x)dμ(x)Δφ(z)d A(z) =

∫∫
GE(z, x)Δφ(z)d A(z)dμ(x)

= 2π
∫∫

ωE(dz, x)dμ(x)φ(z)d A(z),
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where Fubini’s theorem is justified since supp(φ) ⊂ C\supp(μ), supsupp(φ)×supp(μ)

|GE(z, x)| < ∞. That is,

1

2π
Δ

(∫
GE(z, x)dμ(x)

)
=

∫
ωE(dz, x)dμ(x) =: ρ.

Root asymptotics and Theorem 3.12 imply that on C \ R
∫

GE(z, x)dμ(x) = β +Φν(z, x∞)−Φμ(z, z∗).

Applying the weak identity principle for subharmonic functions [19, Theorem 2.7.5],
this equality also holds on Ωμ. Thus, computing the distributional Laplacian on both
sides yields ν = ρ and w-lim νn = ρ. ��
Lemma 3.14 Assume Hypothesis 1.9. Then, fix a gap (a,b) and let [un, vn] = En ∩
[a,b]. Passing to a subsequence such that there are limits u∞, v∞ ∈ [a,b], i.e.,

lim
�→∞ vn�

= v∞, lim
�→∞ un�

= u∞

we have

u∞ = v∞.

Proof Byconformal invariancewe can assume that∞ /∈ (a,b) and consider again {hn}
as a family of subharmonic functions in ΩC. We have En ∩ suppD∞

n = ∅, since either
Fn has a pole at c or if Fn has a generalized zero at c then by (ii) of Theorem 2.9 there
is no extension in this gap. Due to Theorem 1.10, limn→∞ hn = ∫

GE(·, x)dμ(x).

Assume that v∞ − u∞ = δ > 0. For any 0 < ε < δ/2, there exists �0 such that for
all � > �0, we have

A := [u∞ + ε, v∞ − ε] ⊂ [un�
, vn�

]. (3.23)

Therefore, defining K ′ as in (3.16), we have A∩ K ′ = ∅. Note that first we only have
empty intersection without taking the closure, but since ε above can be made smaller,
we also conclude that it holds for K ′.

By Theorem 3.12 we have for q.e. z ∈ ΩK ′

lim sup
�→∞

hn�
(z) =

∫
GE(z, x)dμ(x).

Since suppμ ⊂ K ′, it follows from Lemma 3.2 that
∫

GE(z, x)dμ(x) > 0 for every
z ∈ ΩK ′ and therefore in particular for z ∈ A. On the other hand, by definition of
En and (3.23), we have hn�

(z) ≤ 0 there. Since A has positive capacity, this gives a
contradiction. ��
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4 Szegő–WidomAsysmptotics

4.1 Asymptotics of log |Fn|

In the following in addition to the assumptions made in Sect. 3, we assume that E is
a regular Parreau–Widom set. Let us recall its definition. First we assume that E is
regular for the Dirichlet problem. Let z0 ∈ R \ E and denote the gap containing z0 by
(a,b). Due to regularity and concavity of the Green function, GE(z, z0) has exactly
one critical point in each gap (a j ,b j ) except in the gap (a,b). Let us denote these
critical points of GE(z, z0) by ξ j . Then we call E a regular Parreau–Widom set, if

PWE(z0) =
∑

j

GE(ξ j , z0) < ∞. (4.1)

It is well known that this does not depend on the choice of z0; see e.g. [15, Chapter
V].

Denote the topological circle T j = [a j ,b j ]/a j∼b j . Since a j ,b j are Dirichlet
regular points,

lim
x↓a j

GE(z, x) = lim
x↑b j

GE(z, x) = 0

so with the usual convention

GE(z, a j ) = GE(z,b j ) = 0, (4.2)

the Green function GE(z, t j ) depends continuously on t j ∈ T j . We also consider the
compact space

D(E) =
∞∏
j=0

T j , (4.3)

equipped with the product topology. As for divisors, a functional interpretation will be
convenient. Thus, for an element D ∈ D(E), D = (t j )

∞
j=0, we also use the functional

interpretation

D(x) =
∞∑
j=0

χ{t j }(x).

Wewant to associate to the divisor D0
n an element Dn ∈ D(E). In principle we want

to define Dn as the restriction of D0
n to R \ E. Recall that due to Theorem 2.3(v) and

(vi), there is at most one generalized zero in each gap and no generalized zero in the
gap containing x∗. Since deg D0

n = n, almost all gaps do not contain a generalized
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zero. To overcome this, we define

Dn = (t j
n )∞j=0, (4.4)

where t j
n = t , if there is t ∈ [a j ,b j ] such that D0

n(t) = 1 and otherwise we define t j
n

to be the coset of a j ∼ b j in T j . Due to (4.2), these choices formally complete the
definition of Dn ∈ D(E) without affecting certain sums below.

In the previous section we have described root asymptotics, i.e., asymptotics of
1
n log |Fn(z)|. The following theorem describes asymptotics of log |Fn(z)| and is the
key to prove Szegő-Widom asymptotics in Theorem 4.5.

Theorem 4.1 Assume Hypothesis 1.9 and let n� be such that lim�→∞ x∗n�
= x∗∞ ∈

(a,b) and lim�→∞ Dn�
= D. Then for z ∈ C \ (R \ (a,b)), we have

lim
�→∞

(
log |Fn�

(z)| −
∑
c

D∞
n�

(c)GE(z, c)

)
= − log 2−

∑
t

D(t)GE(z, t). (4.5)

Moreover, D(a) = 1.

Proof Define

Hn�
(z) =

∑
c

(
(Fn�

)∞(c)GEn�
(z, c)− D∞

n�
(c)GE(z, c)

)
.

Due to (3.8) and Lemma 3.8 it remains to show that

lim
�→∞ Hn�

(z) = −
∑

t

D(t)GE(z, t). (4.6)

Let us assume without loss of generality that all x∗n�
lie in (a,b). Recall that by

Theorem 2.9(i) Dn�
(a) = 1, showing that D(a) = 1. Moreover, Theorem 2.9(i)

implies En�
∩ (a,b) = ∅ and since GE(z, c) − GEn (z, c) ≥ 0 and (Fn)∞ = D∞

n on
(a,b), we conclude that (−Hn�

)� defines a family of positive harmonic functions in
C\(R\(a,b)) and is thus by the Harnack principle precompact in the space of positive
harmonic functions together with the function which is identically+∞ equipped with
uniform convergence on compact subsets.

Let us now turn to the other gaps. Let [u j
n, v

j
n ] denote the extension in the j th gap

of the set En as in Theorem 2.9 and consider

GEn�
(z, c)− GE(z, c)

as a subharmonic function in Ω = C \ E, which vanishes on E. Thus, by Lemma 3.6

GEn�
(z, c)− GE(z, c) = −

∑
j

∫ v
j
n�

u j
n�

GE(z, x)ωEn�
(dx, c),

123



Constructive Approximation

Let us define

ωn�
(dx) =

∑
c

(Fn�
)∞(c)ωEn�

(dx, c),

and recall that this is just a finite sum. We conclude that

Hn�
(z) =

∑
c

(Fn�
)∞(c)

(
GEn�

(z, c)− GE(z, c)
)

−
∑
c

(
(D∞

n�
(c)− (Fn�

)∞(c))GE(z, c)
)

= −
∞∑
j=0

∫ v
j
n�

u j
n�

GE(z, x)ωn�
(dx)−

∑
c

(
(D∞

n�
(c)− (Fn�

)∞(c))GE(z, c)
)
.

(4.7)

Due to Lemma 3.3 there are finitely many gaps containing poles. So by partitioning
into finitely many subsequences, we can assume that for each j , for all � > 0 either
D∞

n�
(t j

n�
) > 0 or D∞

n�
(t j

n�
) = 0, i.e., in the first case t j

n�
corresponds to a pole reduction

of Fn�
. We will show that both cases lead to the same limit.

Let us first consider a gap (a j ,b j ) so that D∞
n�

(t j
n�

) = 0 and let us assume that

t j
n�
→ t j∞ ∈ (a j ,b j ). Due to Lemma 3.14,

lim
�

u j
n�
= lim

�
v

j
n�
= t j∞. (4.8)

In particular for � big enough we have [u j
n�

, v
j
n�
] ⊂ (a j ,b j ) and it follows then from

Lemma 2.11 that

ωn�
([u j

n�
, v

j
n�
]) = 1.

Hence,

ωn�
|[u j

n�
, v

j
n�
] → δ

t j∞

and therefore

∫ v
j
n�

u j
n�

GE(z, x)ωn�
(dx) → GE(z, t j∞).

If t j∞ = a j , using that GE(z, ·) vanishes at a j we conclude as above that

∫ v
j
n�

u j
n�

GE(z, x)ωn�
(dx) → 0 = GE(z, t j∞).

123



Constructive Approximation

It remains to discuss the gaps where D∞
n�

(t j
n�

) = 1. Due to Theorem 2.9(ii), u j
n�
=

v
j
n�
= a j , but in this case

D∞
n�

(t j
n�

)− (Fn�
)∞(t j

n�
) = 1.

Thus, these are exactly the terms that contribute in the second sum in (4.7). Since GE

is continuous we conclude that GE(z, t j
n�

) → GE(z, t j∞). Hence, if we are allowed
to interchange the limit and summation in (4.7), we have proved (4.6). As in [15,
Chapter V], by a Harnack-type argument, the Parreau–Widom condition implies∑

j supx∈(a j ,b j )
GE(z, x) < ∞ and since moreover ωn�

((a j ,b j )) ≤ 1 interchanging
the limits is justified and we are done. ��

4.2 Blaschke Products, Character-automorphic Hardy Spaces and a Related H∞
Extremal Problem

We will now pass from asymptotics of the superharmonic function log |Fn| to asymp-
totics of the rational function Fn . Thus, essentially in (4.5) we need to add harmonic
conjugates and apply exp. Thus, the left-hand side in (4.5) will lead to complex Green
functions

BE(z, c) = e−(GE(z,c)+i G̃E(z,c)),

as defined in (1.20). We have already mentioned that in general BE(z, c) is a multi-
valued function in Ω . Let us fix a normalization gap (a,b) and z0 ∈ (a,b) and define
E j = [z0, a j ] ∩ E. Let γ̃ j be the generator of the fundamental group π1(Ω, z0), which
starts at z0 and passes through the gap (a j ,b j ), encircling the set E j once. If we extend
BE(z, c) analytically along γ j , we get

BE(γ̃ j (z), c) = e2π iωE(E j ,c) BE(z, c). (4.9)

When working with multi-valued functions, it is convenient to consider them as
single-valued functions on the universal cover of Ω = C \ E. By means of the Koebe–
Poincaré uniformization theorem, Ω is uniformized by the disk D; that is, there exists
a Fuchsian group Γ and a meromorphic function z : D → Ω with the following
properties:

1. ∀z ∈ Ω ∃ ζ ∈ D : z(ζ ) = z,

2. z(ζ1) = z(ζ2) ⇐⇒ ∃ γ̃ ∈ Γ : ζ1 = γ̃ (ζ2).

We fix it by the normalization z(0) = z0, z′(0) > 0. For Denjoy domains the cover-
ing map can be explicitly constructed [20, Section 4]. Moreover, there exists a Ford
fundamental domain F , so that z : F → Ω is bijective. We denote by Γ ∗ the group
of unitary characters of Γ ; that is, group homomorphisms from Γ into T := R/Z.
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By the covering space formalism, Γ is group isomorphic to the fundamental group
π1(Ω, z0). For a fixed ζ1 ∈ D we denote by

b(ζ, ζ1) :=
∏
γ∈Γ

γ (ζ1)

|γ (ζ1)|
γ (ζ1)− ζ

1− γ (ζ1)ζ
, (4.10)

the standard Blaschke product. Since CapE > 0, Γ is of convergent type and thus the
product is indeed convergent. The functions b(ζ, ζ1) are character-automorphic, i.e.,
there exists χz1 ∈ Γ ∗ such that

b(γ (ζ ), ζ1) = e2π iχz1 (γ )b(ζ, ζ1), ∀γ ∈ Γ .

If z1 = z(ζ1), then these Blaschke product are related to the Green function of Ω , by

− log |b(ζ, ζ1)| = GE(z(ζ ), z1).

Thus, we can regard the multi-valued functions BE(z, z1) as single-valued character-
automorphic function on the universal cover.

Definition 4.2 Let f be analytic in D. We call f (Γ ∗-) character-automorphic with
character α ∈ Γ ∗ if

f ◦ γ = e2π iα(γ ) f , ∀γ ∈ Γ .

Similarly, if F is an analytic function on Ω , then we call F (π1(Ω)∗-) character-
automorphic with character α ∈ π1(Ω)∗, if

F ◦ γ̃ = e2π iα(γ̃ )F, ∀γ̃ ∈ π1(Ω).

Via the covering map z, Γ ∗- and π1(Ω)∗-character-automorphic functions are in one-
to-one correspondence. The advantage is thatΓ ∗- character-automorphic functions on
the universal cover D are single-valued. Therefore, we will formulate all convergence
results for the corresponding single-valued lifts on D.

Recall that H∞
Ω (α) denotes the space of bounded analytic character-automorphic

functions, F , in Ω; see (1.16). It is a fundamental result of Widom [32] that if E
is a Parreau–Widom set, then H∞

Ω (α) �= {0} for every α ∈ π1(Ω)∗. The Widom
maximizer for x∗ and character α is the unique function W (z;α, x∗) in the unit ball
of H∞

Ω (α) such that

W (x∗;α, x∗) = max{Re F(x∗) : F ∈ H∞
Ω (α), ‖F‖Ω ≤ 1}. (4.11)

We are now ready to state a definition of Direct Cauchy theorem. It is usually stated
as a point evaluation property for certain H1 functions inΩ [15], and hence the name,
but it can be equivalently defined by the following:
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Constructive Approximation

Definition 4.3 We say that the Direct Cauchy Theorem (DCT) holds in Ω , if for one
and hence for all x∗ ∈ Ω , the map α �→ W (x∗;α, x∗) is continuous on π1(Ω)∗
equipped with the topology dual to the discrete topology on Γ .

Let us for notational convenience also define BE(z, z0) ≡ 1, if z0 ∈ E. Note that
generally the harmonic conjugate is fixed up to an additive constant. So an additional
normalization is required in (1.20). Since we will have varying normalizations, we
will not fix it for a single function, but assume instead that for products of complex
Green functions all of them are normalized to be positive at the same point. In this
way, we can associate to any divisor D ∈ D(E) a product of complex Green functions,
in other words a Blaschke product, by

BE(z, D) = BE(z, D, φ) = eiφ
∏

t

D(t)BE(z, t). (4.12)

Note that

− log |BE(z, D)| =
∑

t

D(t)GE(z, t),

that is, these are exactly expression of the type appearing in (4.5). Moreover, the
Widom condition guarantees that BE(z, D) converges to a non-trivial function for any
D ∈ D(E). Let us define the restriction

Dk(E) = {D ∈ D(E) : D(ak) = 1}.

For D ∈ Dk(E) it is natural to normalize BE(z, D, φ) such that BE(z, D, φ) > 0 on
(ak,bk) which we fixes φ. To be more precise, since complex Green functions are
defined locally and then extended analytically, this normalization holds only for one
branch. Let us always assume that this branch corresponds to the values of the lift to
D in the fundamental domain F .

The Abel map is an important object in the spectral theory of self adjoint difference
and differential operators. It is a map π fromDivisorsDk(E) to the characters π1(Ω)∗.
However, there is a subtle difference between this Abel map and the Abel map which
we will implicitly use for Problem 1.3. It can be seen from the definition of D(E). In
spectral theory one would usually take a two-fold cover of the interval [a j ,b j ] and
identify the endpoints of the two copies of the interval, whereas in our case we only
took one copy and identified a j ∼ b j . This map π is also the reason why the DCT
property is needed, because this assumption makes π a bijection which is used in the
proof of the following theorem. The proof relies on the fundamental construction of
the generalized Abel map from Sodin and Yuditskii [22].

Theorem 4.4 ([5, Theorem 5.1], [11, Proposition 2.3]) Let Ω be a regular Parreau–
Widom domain such that DCT holds. Let D ∈ Dk(E) and let α be the character of
BE(z, D) defined by (4.12). Then, for x∗ ∈ (ak,bk) we have

W (z;α, x∗) = BE(z, D).
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We see again that as for Fn , the extremal function only depends on the chosen gap
(ak,bk) and not the particular extremal point in the gap. Since the above theorem
holds for any gap and arbitrary Blaschke products associated to divisors in Dk(E), we
conclude that if D ∈ D j (E) for j �= k, then up to a unimodular constant BE(z, D) is
also the Widom maximizer for the gap (a j ,b j ). This is in line with the Corollary 1.8
for Fn .

Let D∞
n , x∗n and dn be as in Problem 1.3 and define

B(n)
E (z) = eiφn

∏
c

D∞
n (c)BE(z, c),

where eiφn is chosen such that

lim
x→x∗n

B(n)
E (x)r(x, x∗n )dn > 0. (4.13)

Let χn denote the character of B(n)
E . Let further

Wn(z) = W (z;χn, x∗n ),

denote the Widom maximizer for the point x∗n and character χn .
For the following we follow the spirit of [5] and state convergence results on the

universal coverDwithout introducing the corresponding lift of multi-valued functions
on Ω . To give an example: if Qn are π1(Ω)∗-character-automorphic function on Ω ,
we will write Qn → Q uniformly on compact subsets of D, meaning that there are
lifts qn of the Qn which are Γ ∗-character-automorphic functions such that qn → q
uniformly on compact subsets of D and Q is the projection of q.

Theorem 4.5 Let E be a regular Parreau–Widom set, such that DCT holds in Ω and
Fn be the extremizer of (1.3). Then, assuming Hypothesis 1.9, uniformly on compact
subsets of D, we have

lim
n→∞

(
B(n)
E (z)Fn(z)− 1

2
Wn(z)

)
= 0. (4.14)

Wewill use the following simple criterion based on normality; note that it is simpler
than the corresponding criterion used in the polynomial case [5, Proposition 4.2], since
our approach avoids working on multivalued functions on varying domains:

Proposition 4.6 Let {qn}∞n=1 be a normal family on D. Let q∞ be analytic on D so that
for some ζ0 ∈ D and some neighborhood, V , of ζ0 we have that

lim
n→∞ |qn(ζ )| = |q∞(ζ )| for all ζ ∈ V ; (4.15)

qn(ζ0) > 0, q∞(ζ0) > 0. (4.16)

Then qn → q∞ uniformly on compact subsets of D.
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Proof Bynormality, it suffices to prove that any subsequence (qn�
)∞�=1 which converges

uniformly on compacts has the limit q∞. Denote by f the limit of such a sequence.
By (4.15), | f (ζ )| = |q∞(ζ )| for all ζ ∈ V . By (4.16), by possibly decreasing V , we
can assume q∞(ζ ) �= 0 for ζ ∈ V , so by the maximum principle applied to f /q∞,
we conclude f = eiφq∞ for some unimodular constant eiφ . By (4.16), f (ζ0) ≥ 0 and
q∞(ζ0) > 0, so eiφ = 1 and f = q∞. ��

Defining

Qn(z) = Fn(z)B(n)
E (z),

the strategy is now clear: First we need to check that Qn(z) defines a normal family.
Realizing that log |Qn(z)| is exactly the left hand-side in (4.5), Theorem 4.1 and
Proposition 4.6 imply that all accumulation points are Blaschke products. Combining
this with Theorem 4.4 finishes the proof of Theorem 4.5.

Lemma 4.7 The sequence {Qn}∞n=1 forms a normal family in D.

Proof Since on Ω

(Fn)∞ ≤ D∞
n = (B(n)

E )0,

Qn are analytic π1(Ω)∗-character automorphic functions in Ω . They have therefore
Γ ∗-character automorphic lifts toD. ByMontel’s theorem [26, Chapter 6], it suffices to
show that |Fn B(n)

E | ≤ 1 inΩ . The functions log |Qn| are subharmonic inΩ .Moreover,
since E is regular and |Fn| ≤ 1 on E, for every ζ ∈ E

lim sup
z→ζ

log |Qn(z)| = lim sup
z→ζ

log |Fn(z)| − lim
z→ζ

∑
t

D∞
n (t) lim

z→ζ
GE(ζ, t) ≤ 0,

where we used Dirichlet regularity and the fact that the sum is only finite. The claim
follows by the maximum principle for subharmonic functions [19, Theorem 2.3.1].

��
Lemma 4.8 Suppose Hypothesis 1.9 holds and let n� be a subsequence such that
lim�→∞ Dn�

= D and lim�→∞ x∗n�
= x∗∞ ∈ (a j ,b j ) for some j ≥ 0. Then, uniformly

on compact subsets of D we have

lim
�→∞ Qn�

(z) = 1

2
BE(z, D),

where D ∈ D j (E) and BE(x∗∞, D) > 0.

Proof Let us assume without loss of generality that all x∗n�
lie in (a j ,b j ). By (4.13),

we have

Qn�
(x∗n�

) > 0.
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Moreover, Qn�
are real, i.e., Qn�

(z) = Qn�
(z). Since D0

n(t) = 0 for every t ∈ (a j ,b j ),
it follows that Qn�

(t) > 0. Thus, in particular at x∗∞. Thuswe can apply Proposition 4.6
in a vicinity of x∗∞ and then the claim follows from Theorem 4.1. ��
Proof of Theorem 4.5 Since Qn, Wn form normal families, by precompactness it suf-
fices to prove that every subsequencehas a subsubsequence so that lim� Qn�

−Wn�
= 0.

Let us pass to a subsequence such that lim�→∞ Dn�
= D and lim�→∞ x∗n�

= x∗∞ ∈
(a j ,b j ) as in Lemma 4.8. Then by Lemma 4.8

lim
�→∞ Qn�

(z) = 1

2
BE(z, D).

If α is the character of BE(z, D) this implies that χn�
→ α. By Theorem 4.4,

BE(z, D) = W (z, α, x∗∞). On the other hand, it is proven in [5, Theorem 3.1] that
DCT implies that W (z;χn�

, x∗n�
) → W (z, α, x∗∞) uniformly on compact subsets of

D. In this reference there is no sequence of extremal points, but since theWidommax-
imizer only depends on the given gap and not on the particular point, the sequence
W (z;χn�

, x∗n�
) eventually only depends on the character. This concludes the proof.

��
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We prove a bijective unitary correspondence between (1) the isospectral torus of almost-

periodic, absolutely continuous CMV matrices having fixed finite-gap spectrum E and

(2) special periodic block-CMV matrices satisfying a Magic Formula. This latter class

arises as E-dependent operator Möbius transforms of certain generating CMV matrices

that are periodic up to a rotational phase; for this reason we call them “MCMV.” Such

matrices are related to a choice of orthogonal rational functions on the unit circle, and

their correspondence to the isospectral torus follows from a functional model in analog

to that of GMP matrices. As a corollary of our construction we resolve a conjecture of

Simon; namely, that Caratheodory functions associated to such CMV matrices arise as

quadratic irrationalities.

1 Introduction and Main Results

This paper studies two equivalent notions of interest, one in the spectral theory of

certain unitary operators and the other in the theory of analytic functions mapping the

unit disk into its closure. This connection between CMV matrices and Schur functions
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is no mystery to experts in either field. We introduce here our results from both

perspectives because we find them striking and attractive, as well as not immediately

equivalent.

We begin in the context of the title:

1.1 Finite-gap CMV and MCMV matrices

Fix a sequence {ak}k∈Z ∈ DZ of numbers in the unit disk D, and define a family of 2 × 2

unitary matrices by

�k :=
[

ak ρk

ρk −ak

]
, ρk =

√
1− |ak|2.

Letting �k act on the span of {δk, δk+1} in �2(Z), define

L =
⊕

l∈Z
�2l, M =

⊕

l∈Z
�2l+1.

The (whole-line) CMV matrix associated to the sequence {ak}k∈Z is the unitary operator

C := C({ak}) = LM.

Represented in the basis {δk}k∈Z, C is a five-diagonal matrix with repeating 2 × 4 block

structure:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

ρ2l−1a2l −a2la2l−1 a2l+1ρ2l ρ2lρ2l+1

ρ2lρ2l−1 −ρ2la2l−1 −a2l+1a2l −ρ2l+1a2l

ρ2l+1a2l+2 −a2l+2a2l+1 a2l+3ρ2l+2 ρ2l+2ρ2l+3

ρ2l+2ρ2l+1 −ρ2l+2a2l+1 −a2l+3a2l+2 −ρ2l+3a2l+2
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We will study those CMV matrices with almost-periodic coefficients {ak}k∈Z having full

a.c. spectrum consisting of a fixed finite union of non-degenerate closed circular arcs

E ⊂ ∂D. We denote the set of all such CMV matrices by TCMV(E). Topologically, TCMV(E)

is a torus of dimension equal to the number of disjoint arcs in E.
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14018 J. S. Christiansen et al.

CMV matrices are natural objects of interest in the context of orthogonal

polynomials on the unit circle (OPUC) (see [30, 31]). This in part relies on the interesting

fact that half-line CMV matrices C+, formed by setting a−1 = −1 above and restricting

to �2(N), are universal for cyclic unitary operators in the sense that, for any probability

measure ν with infinite support on the unit circle ∂D, multiplication by the independent

variable in L2(dν) is unitarily equivalent to some half-line CMV matrix C+. This

discovery was made surprisingly recently by Cantero, Moral, and Velázquez [7] by

considering the basis of L2(dν) generated by orthonormalizing {1, z−1, z, z−2, z2, . . .}. In

comparison, it has long been known (see, e.g., [36]) that tridiagonal Jacobi matrices

are universal models for self-adjoint operators with a cyclic vector. CMV matrices are

also important, for example, in the theory of random matrices and integrable systems

[15, 22], and for quantum walks [6]; see also [4, 16].

The CMV basis is far from the only generating set for L2(dν). Letting bw be the

elementary Blaschke factor for D vanishing at w, that is,

bw(z) := z−w

1−wz
(1.1)

and denoting by ŵ = 1/w reflection with respect to ∂D, one has that bw(ẑ) = b̂w(z) =
cwbŵ(z), cw = ŵw. Setting c0 = 1, this allows us to extend this notion also to w = ∞
by b∞(z) = b0(ẑ) = 1/z and hence we can suggestively rewrite the CMV basis above as

instead being generated by orthonormalizing the sequence {1, b∞, b0, b2∞, b2
0, . . .}. For a

fixed sequence of points {zk}k∈N ∈ DN with modulus bounded uniformly away from 1, if

we denote by {Bk} and {B∗k} the families of Blaschke products

B0(z) = 1, Bk(z) =
k∏

j=1

bzj
(z), B∗k(z) = Bk(ẑ) =

k∏

j=1

bzj
(z)−1, (1.2)

one could just as well have spanned L2(dν) by the sequence {B0, B∗1, B1, B∗2, B2, . . .}.
In [37], Velázquez showed that the structure of multiplication by the independent

variable z in L2(dν) in the orthonormalization of this new generating set is related

to CMV matrices via an operator Möbius transform; specifically, denoting by D+ :=
diagN{0, z1, z1, z2, z2, . . .}, he showed that multiplication by z in L2(dν) is unitarily

equivalent to the operator

b−D+(C+) := ηD+
(
1+ C+D∗+

)−1(D+ + C+
)
η−1

D+ , ηD+ =
√

1− D+D∗+ (1.3)
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for some half-line CMV matrix C+. This theorem suggests we should study this new

class of operator Möbius transforms of CMV matrices more closely:

Definition 1.1 (MCMV matrices). Fix n ≥ 1 and let �z = {zk}n−1
k=0 ∈ Dn with z0 = 0,

{ak}k∈Z ∈ DZ, and ϑ ∈ R/2πZ. Denote by D0 the 2n-periodic diagonal matrix

D0 := D0(�z) = diagZ{. . . , zn−2, zn−1, zn−1, z0 | z0, z1, z1, z2, . . .}, (1.4)

let �k(ϑ) be the 2n × 2n diagonal matrix �k(ϑ) := diag2n{eikϑ , e−ikϑ , . . . , eikϑ , e−ikϑ }, and

define

�(ϑ) :=
⊕

k∈Z
�k(ϑ). (1.5)

With this notation, the (whole-line) MCMV matrix for �z, {ak}, and ϑ is defined by

A := A({ak}, ϑ ; �z) = �(ϑ)∗b−D0
(C)�(ϑ), (1.6)

where C = C({ak}) is the CMV matrix associated to {ak}k∈Z.

Before proceeding, we make a few remarks regarding this definition. First, we

split �2(Z) = �2+ ⊕ �2− around zero, with the zeroth entry belonging to �2+; we denote

the site of this splitting with a vertical bar in (1.4). Second, the operator Möbius

transform b−D0
(C) in (1.6) is an operator on �2(Z) defined exactly as in (1.3) with

D0 replacing D+. Furthermore, vectors �z = {zk}n−1
k=0 ∈ Dn of interpolation points will

henceforth have z0 = 0 unless otherwise noted; the presence of this zero gives MCMV

matrices a block CMV band-structure, see (1.7) and Section 4.3. Finally, we shall explain

the role of �(ϑ) momentarily and be even more specific in Section 3; in short, this

diagonal matrix enables us to change from periodicity up to a rotational phase to pure

periodicity.

Like CMV matrices, an MCMV matrix A is again band-structured. If we split A

into 2n × 2n blocks Aij, then Aij = 0 if |i − j| > 1. Moreover, the off-diagonal blocks are

of the form Ai,i−1 = viδ
ᵀ
2n−1 and Ai,i+1 = uiδ

ᵀ
0 for some explicit vectors ui, vi ∈ C2n; cf.

Lemma 4.8 and the figure below:
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14020 J. S. Christiansen et al.

Furthermore, since operator Möbius transforms preserve unitarity, MCMV matrices are

likewise unitary operators. Thus MCMV matrices can be viewed as being “block-CMV.”

This special structure does not hold for arbitrary operator Möbius transforms of CMV

matrices; it follows in our case from D0 having periodically repeated zero entries.

We denote the class of all MCMV matrices associated to �z ∈ Dn by

A(�z) := {
A({ak}, ϑ ; �z) : {ak} ∈ DZ, ϑ ∈ R/2πZ

}
(1.8)

and give special consideration to the subset Aper(�z) ⊂ A(�z) of periodic operators, that is,

Aper(�z) := {
A ∈ A(�z) : S2nA = AS2n}, (1.9)

where, as usual, S is the right shift operator. Notice that the usual CMV matrices are

simply the special case of MCMV matrices associated to the vector �z where zk = 0 for

all k. This realization gives rise to a natural (if somewhat ill-posed) question: is there a

“best” generating set of Blaschke products for a given measure ν on ∂D? In the context

of whole-line CMV matrices C ∈ TCMV(E) , we offer an affirmative answer in the form of

a correspondence to certain isospectral periodic MCMV matrices. To properly state this

correspondence, we first need to introduce a fundamental object in the spectral analysis

of periodic MCMV matrices.

Given a value a ∈ D, let

U(a) := 1

ρ

[
1 a

a 1

]
, ρ =

√
1− |a|2. (1.10)

For a fixed A = A({ak}, ϑ ; �z) ∈ Aper(�z), define the monodromy matrix TA by

TA(z) := U(a0)

[
bz1

(z) 0

0 1

]
U(a1)

[
bz1

(z) 0

0 1

]
U(a2)

[
bz2

(z) 0

0 1

]
· · ·

· · ·U(a2n−3)

[
bzn−1

(z) 0

0 1

]
U(a2n−2)

[
bz0

(z) 0

0 1

]
U(a2n−1)

[
bz0

(z) 0

0 1

][
e−iϑ 0

0 eiϑ

]
.

(1.11)

Letting B(z) = z
∏n−1

j=1 bzj
(z) = √

det TA(z), we introduce the following:
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Definition 1.2 (Discriminant of an MCMV matrix). Let A = A({ak}, ϑ ; �z) ∈ Aper(�z) be a

periodic MCMV matrix. The discriminant of A is the rational function defined by

�A(z) := 1

B(z)
tr
(
TA(z)

)
. (1.12)

Remark. Denoting by j the signature matrix j =
[

1 0

0 −1

]
, we note that TA(z)∗jTA(z) ≤ j

for z ∈ D, while TA(z)∗jTA(z) = j when z ∈ ∂D. Functions of this type are called j-

inner matrix functions and equation (1.11) represents a factorization of TA into so-called

elementary Blaschke–Potapov factors of the first kind. The study of general j-contractive

matrix functions and their multiplicative structure goes back to Potapov [28].

For periodic CMV matrices, the discriminant determines the spectrum. Our

discriminant does the same; specifically, we will show in Section 4.2 that the key

properties of �A are:

(i) �−1
A ([−2, 2]) = σ(A),

(ii) the poles of �A are supported on �z and the reflected points {ẑj : zj ∈ �z},
(iii) �A is real, that is, �A(ẑ) = �A(z).

Damanik–Killip–Simon [8] showed that the discriminant of a periodic CMV

matrix also completely describes solutions to the inverse problem via a “Magic For-

mula.” To consider the inverse problem in our setting, fix a finite-gap set E ⊂ ∂D, that

is, a finite disjoint union of non-degenerate closed circular arcs. Let us refer to the

arc-components as bands and to the connected components of ∂D \ E as gaps. Then

we look for a rational function � that satisfies the above properties (i)–(iii) with σ(A)

substituted by E. Provided such a function exists, we will see in Lemma 4.4 that these

properties define � uniquely up to a sign. While such a function need not always exist

for any �z, we can demonstrate by example the existence for a particular vector �zE.

Consider such a finite-gap set E having g + 1 gaps (and respectively bands). For

any point z0 in the domain C \ E, there exists an Ahlfors function wz0
that maximizes

the modulus of the derivative at z0 (or, in the case z0 = ∞, maximizes limz→∞ |zw∞(z)|)
among all analytic functions on C \ E with modulus bounded by 1; cf. [1, 12]. This

extremal property defines wz0
uniquely up to a unimodular multiplier and, moreover,

wz0
(z0) = 0. In the right normalization, these Ahlfors functions for E ⊂ ∂D have the

symmetry property

wẑ0
(ẑ) = wz0

(z); (1.13)
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in particular, the zeros of w∞ can be obtained by reflecting the zeros of w0 with respect

to ∂D. In terms of these functions, we can define a special function, which we call the

generalized discriminant, related to the set E:

Definition 1.3 (Generalized discriminant). For a finite union of non-degenerate closed

circular arcs E ⊂ ∂D, the generalized discriminant is defined by

�E := 1

w0w∞
+w0w∞. (1.14)

By (1.13), we see that �E is real-valued on ∂D; since |wz0
(z)| = 1 for z ∈ E in the

sense of nontangential limits and |wz0
(z)| < 1 for z ∈ C \ E, it follows that

E = �−1
E ([−2, 2]). (1.15)

The function �E has 2(g + 1) poles, half of which lie inside the unit disk. Moreover,

there is exactly one critical point (i.e., a zero of �′
E) in each band of E and in each

gap of E. While �E maps all critical points in bands to −2, the critical points in gaps

have �E-value strictly greater than 2. For more details on the Ahlfors function and the

discriminant, we refer to Appendix A (where in particular these properties are proven).

As will be crucial for our analysis, we define �zE to be some fixed ordering of the poles

of �E inside D, that is,

�zE := {z0 = 0, z1, . . . , zg} ∈ Dg+1, zk ∈ D a pole of �E. (1.16)

With these definitions in hand, we can now clarify precisely the relationship

between almost-periodic finite-gap CMV matrices C ∈ TCMV(E) and periodic MCMV

matrices. For our finite-gap set E ⊂ ∂D, let λ∗ ∈ ∂D \ E and fix �z ∈ Dn with z0 = 0.

Then we define

TMCMV(E, �z, λ∗) := {A ∈ Aper(�z) : σ(A) = E, �A(λ∗) > 0}. (1.17)

For an independent choice of these parameters it might happen that TMCMV as defined in

(1.17) is empty; this could for instance be illustrated by the fact that not every finite-gap

set E is the spectrum of a periodic CMV matrix, which correspond to the choice zk = 0

for all k. However, for the special choice of E and �zE we in fact have a correspondence

between TMCMV(E, �zE, λ∗) and TCMV(E):
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Theorem 1.4 (Periodic Coordinates for finite-gap CMV matrices). Let E ⊂ ∂D be a

disjoint union of g + 1 non-degenerate closed circular arcs, and let λ∗ ∈ ∂D \ E. For

the sequence �zE := {zk}gk=0 ∈ Dg+1 of points (1.16) depending only on E, there is a unitary

bijection between TCMV(E) and TMCMV(E, �zE, λ∗); that is,

TCMV(E) � TMCMV(E, �zE, λ∗). (1.18)

In particular, for an almost-periodic CMV matrix C with absolutely continuous spectrum

E, there exists an associated CMV matrix C = C({ak}) with phase-periodic coefficients

ak+2(g+1) = e−2iϑak, k ∈ Z (1.19)

such that C is unitarily equivalent to the periodic MCMV matrix A({ak}, ϑ ; �zE) ∈ Aper(�zE)

and the spectral measures of the one-sided restrictions C+ and A+ coincide; cf. (4.5).

Remarks.

(i) The above theorem shows that a periodic MCMV matrix is naturally related

to two different CMV matrices: the almost-periodic CMV matrix in TCMV(E)

and the “generating” phase-periodic CMV matrix. Throughout, we will

denote the former by C with parameters {ak} (resp. {ρk}) and the latter by

C with parameters {ak} (resp. {ρk}).
(ii) As a consequence of (1.19), the operator b−D0

(C) is periodic up to a phase. By

conjugating it with �(ϑ)—and this is the main purpose of introducing such a

diagonal matrix—we get that A({ak}, ϑ ; �zE) becomes periodic in the standard

sense. This is particularly important in view of Theorem 1.5 below, since by

Naiman’s lemma [21] an operator satisfying the right-hand side of (1.20) is

necessarily periodic.

(iii) Notice that (1.19) is invariant under the substitution ϑ 
→ ϑ + π . Conse-

quently, there are in fact two MCMV matrices, A({ak}, ϑ ; �z) and A({ak}, ϑ +
π ; �z), in Aper(�zE) with spectrum E having unitary equivalent one-sided

restrictions to C+. However, notice that this same map sends eiϑ to −eiϑ ,

which, by (1.11), changes the sign of the discriminant �A 
→ −�A. For this

reason, the normalization �A(λ∗) > 0 fixes uniquely one such MCMV matrix.

We stress that, by definition, the normalization �E(λ∗) > 0 holds for any

λ∗ ∈ ∂D \ E, see (1.13), (1.14), and Appendix A; consequently, the function �E has the
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key properties (i)–(iii) of a discriminant of an MCMV matrix in TMCMV(E, �zE, λ∗). The

following main result, dubbed a “Magic Formula” in deference to the analogous result

of Damanik–Killip–Simon, shows that this function indeed characterizes the isospectral

torus:

Theorem 1.5 (Magic Formula for MCMV matrices). Let E ⊂ ∂D be a disjoint union of

g+ 1 non-degenerate closed circular arcs, let λ∗ ∈ ∂D \E, and let �zE be as in (1.16). Then,

for any A ∈ A(�zE),

A ∈ TMCMV

(
E, �zE, λ∗

) ⇐⇒ �E(A) = S2(g+1) + S−2(g+1), (1.20)

and in this case �A = �E.

On the other hand, for fixed �z ∈ Dn with z0 = 0 and A0 ∈ Aper(�z) with �A0
(λ∗) > 0,

one has that σ(A0) = �−1
A0

([−2, 2]), and consequently

TMCMV(σ (A0), �z, λ∗) =
{
A ∈ Aper(�z) : �A = �A0

}
. (1.21)

Remark. In light of the Magic Formula (1.20) and the observation that �E is positive

in all gaps, one may wonder why the normalization �A(λ∗) > 0 in (1.17) is required. We

emphasize that the positivity of the discriminant for MCMV matrices in TMCMV(E, �zE, λ∗)
follows only from our special choice of vector �zE. If one were to fix a periodic MCMV

matrix A ∈ Aper(�z) and compute its discriminant, it would not generally be the case

that �z = �zσ(A), and the discriminant could then have different signs in different gaps

(as demonstrated by, e.g., periodic CMV matrices). This makes it necessary to select

a normalizing gap in the context of (1.21). Lemma 3.12 below will distinguish these

situations.

The Magic Formula reveals further structure of MCMV matrices relating to the

discriminant �E. For simplicity, let us assume that the poles of �E are simple (as this is

typically the case). We will abuse the notation for residues and define

Resẑk
�E := lim

z→ẑk

(
b−1

zk
�E

)
(z) = ck. (1.22)

Since �E is real, it follows that Reszk
�E = ck. By considering �E as a meromorphic

function on C, we see that it can be expressed in the form

�E(z) = c +
g∑

k=0

(
ckbzk

(z)+ ckbzk
(z)−1

)
, c ∈ R. (1.23)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/18/14016/5735227 by TU
 W

ien Bibliothek user on 07 M
arch 2024



Finite-Gap CMV Matrices 14025

With (1.23) in mind, to understand the Magic Formula we need to understand

each of the operators bzk
(A). In Lemma 4.9 we show that these can be represented by

an operator Möbius transform of the same underlying CMV matrix C, but related to the

“shifted” diagonal operators Dk =
(
1−zkD∗

0

)−1
(D0−zk). Since (Dk)2k−1,2k−1 = (Dk)2k,2k =

0, it follows that S−2kbzk
(A)S2k has the same structure as an MCMV matrix. Moreover,

since bzk
(A) is unitary, we have that bzk

(A)−1 = bzk
(A)∗. Hence, at the outermost diagonal

of �E(A) only one of the summands is non-vanishing. We have illustrated this for the

off-diagonal block of c1bz1
(A)+ c1bz1

(A)−1 in the case n = 4 below:

(
c1bz1

(A)+ c1bz1
(A)−1)

i,i+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0 0

∗ ∗ ∗ 0
∗ ∗ ∗ 0

∗ ∗ ∗ 0 0

∗, � ∗, � ∗, � � � �

∗, � ∗, � ∗, � � � � 0

∗, � ∗, � ∗, � � � � 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.24)

Here ∗ and � indicate non-vanishing entries of bz1
(A) and bz1

(A)−1, respectively. In

general, the outermost non-vanishing entry of bzk
(A) is the (2k, 2(g+1+k))-entry. Since

all the other summands in (1.23) are vanishing at this position, the magic formula fixes

the corresponding value of bzk
(A), that is,

�E(A) = S2(g+1) + S−2(g+1) �⇒ bzk
(A)2k,2(g+1+k) =

1

Resẑk
�E

. (1.25)

The fact that this is a consequence of the structure of MCMV matrices will be proved in

Theorem 4.10.

The above structure reveals an important property of MCMV matrices compared

to their self-adjoint analog, GMP matrices. The relation (1.25) already indicates the

importance of the values Resẑk
�E. In order for bzk

(A) to be well-defined, they should

be nonzero. In fact, for a general MCMV matrix A the values |Reszk
�S−2njAS2nj | are

necessarily bounded away from zero. We will later see (cf. Lemma 4.3) that

inf{|Reszk
�A| : A ∈ A(�z)} > 0. (1.26)
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This should be compared with [39, Theorem 3.3], where such a property was part of

the definition of GMP matrices and guaranteed the existence of certain resolvents

analogous to bzj
(A). It is natural that we do not need this condition since we are in

the setting of unitary operators.

We also point out that the generalized discriminant for MCMV matrices involves

the Ahlfors functions associated to two different points; in contrast, the analogous

object for GMP matrices involves only the Ahlfors function at infinity. This discrepancy

has the consequence that the associated MCMV matrices are even-periodic with half

of the gaps closed (cf. Appendix A). While this could be avoided using a different

discriminant, doing so would introduce further complications elsewhere. In particular,

the benefits of defining the discriminant as we have are (1) we can treat the even- and

odd-periodic CMV cases uniformly, and (2) our discriminant is a rational function.

1.2 Consequences for Schur and Caratheodory functions

Of course, one cannot discuss CMV matrices without discussing Schur functions. A

Schur function is an analytic function f : D → D mapping the open unit disk to its

closure. We denote by S the class of all Schur functions. Provided f ∈ S is not a finite

Blaschke product, the Schur algorithm

f0(z) = f (z),

zfk+1(z) = fk(z)− ak

1− akfk(z)
, ak = fk(0)

determines an infinite sequence of parameters {ak} ∈ DN, also known as Schur

parameters; conversely, any sequence {ak} ∈ DN determines a function f ∈ S by an

associated continued fraction expansion (see, e.g., [30]). For our purposes, it is more

convenient to denote the Schur algorithm in terms of equivalences of projective lines,

that is,
[

fk(z)

1

]
∼ U(ak)

[
z 0

0 1

][
fk+1(z)

1

]
, (1.27)

where v1 ∼ v2 if and only if there exists some nonzero λ ∈ C such that v1 = λv2.

In correspondence to Schur functions are Caratheodory functions, analytic

functions F from D to the right half-plane normalized such that F(0) = 1. A Caratheodory

function F can be determined from a function f ∈ S by

F(z) = 1+ zf (z)

1− zf (z)
,
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or in terms of projective lines by

[
F(z)

1

]
∼
[

1 1

−1 1

][
z 0

0 1

][
f (z)

1

]
. (1.28)

In this latter language it is clear this process is invertible, so indeed this correspondence

is one-to-one. Caratheodory functions have a Herglotz integral representation as

F(z) =
∫

eit + z

eit − z
dνF(eit)

for a unique probability measure νF on ∂D, and are thus in correspondence with

probability measures on the unit circle. Consequently, Schur functions can be put into

correspondence with half-line CMV matrices, in the sense that for a given half-line CMV

matrix C+, there exists f+ ∈ S such that

〈
(C+ − z)−1(C+ + z)δ0, δ0

〉 = 1+ zf+(z)

1− zf+(z)
, (1.29)

and in fact one can check this f+ is the Schur function with parameters {ak}k∈N agreeing

with the coefficients of C+ = C+({ak}). Similarly, whole-line CMV matrices have two

associated Schur functions, one corresponding to each half-line. Specifically, if {ak}k∈Z ∈
DZ and C = C({ak}) is the associated CMV matrix, then one has that

〈
(C − z)−1(C + z)δ0, δ0

〉 = 1+ zf+(z)f−(z)

1− zf+(z)f−(z)
, (1.30)

where f+ is the Schur function with parameters {ak}k∈N and f− is the Schur function

with parameters {−a−1,−a−2, . . .}; cf. [13, 25]. Any Schur function f has a natural

factorization

f (z) = zn

⎛
⎝ ∏

wk �=0

bwk
(z)

|wk|
wk

⎞
⎠ exp

(
−
∫

eit + z

eit − z
dνf (e

it)+ iτ

)
,

where n ≥ 0 is an integer, νf is a non-negative measure on ∂D, τ ∈ R/2πZ (in fact, τ is

the argument of f (z)/zn evaluated at z = 0), and the sequence {wk} of zeros satisfies the

Blaschke condition
∑

(1− |wk|) < ∞. We define

σess( f ) := supp(dνf ) ∪ {wk}′,
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where {wk}′ ⊂ ∂D denotes the set of limit points of the sequence {wk} of zeros of f ; cf

[23, Lecture III]. Note that σess(f ) is a closed subset of ∂D.

For a finite-gap set E ⊂ ∂D, a CMV matrix C lies in TCMV(E) precisely when its

Schur functions f+ and f− solve the following Riemann–Hilbert problem:

f−(eit) = eitf+(eit) for a.e. eit ∈ E, (1.31)

1− eitf+(eit)f−(eit) �= 0 for eit ∈ ∂D \ E, (1.32)

σess(zf+ f−) ⊂ E. (1.33)

We denote the class of all such admissible functions f+ by

S+(E) := {
f+ ∈ S : ∃f− ∈ S s.t. (1.31), (1.32), (1.33) hold

}
. (1.34)

The description of S+(E) as being equivalent to TCMV(E) in the finite-gap setting (and

for even more general sets) was known already to Peherstorfer and Yuditskii [25];

specifically, they showed that, for f+ ∈ S+(E), the corresponding sequence {ak} ∈ DZ

is almost-periodic.

This perspective gives us an alternative way of stating our main results:

membership in S+(E) is equivalent to the existence of an E-dependent Nevanlinna–Pick

type interpolation, analogous to (1.27), whose coefficients are periodic up to a rotational

phase.

Theorem 1.6. Fix a finite disjoint union of g + 1 non-degenerate closed circular arcs

E ⊂ ∂D, and let �zE be as in (1.16). Then f+ ∈ S+(E) if and only if

[
f+
1

]
∼ U(a0)

[
bz1 0
0 1

]
U(a1)

[
bz1 0
0 1

]
U(a2)

[
bz2 0
0 1

]
· · ·U(a2g+1)

[
bz0 0
0 1

] [
e−iϑ 0

0 eiϑ

]

︸ ︷︷ ︸
= TA({ak},ϑ ;�zE)(z)

[
f+
1

]

(1.35)

for some {ak} ∈ D2(g+1) and some ϑ ∈ R/2πZ such that

1

B(z)
tr
(
TA({ak},ϑ ;�zE)(z)

) = �E(z). (1.36)

Using (1.28) to translate (1.35) into the language of Caratheodory functions,

Theorem 1.6 immediately resolves a conjecture of Simon [31, Conjecture 11.9.6]:
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Corollary 1.7. Fix a finite-gap set E ⊂ ∂D. For any C ∈ TCMV(E), the Caratheodory

function F+ associated to the half-line restriction C+ is a quadratic irrationality; that is,

there exist polynomials a(z), b(z), and c(z) such that F+ solves

a(z)F+(z)2 + b(z)F+(z)+ c(z) = 0 (1.37)

for all z ∈ C \ E.

Real numbers that are quadratic irrationalities (with a, b, and c above as

integers) are precisely those having eventually periodic continued fraction expansions.

If one understands the interpolation of Theorem 1.6 as a special continued fraction

expansion for the Schur function f+, Corollary 1.7 should come as no surprise; indeed,

our result shows that almost-periodicity of the Schur parameters associated to abso-

lutely continuous finite-gap CMV matrices is actually a consequence of an underlying

periodicity that the Schur algorithm was too naïve to see.

1.3 Methods and structure of the paper

The relationship of CMV matrices to orthogonal polynomials was discovered by Cantero,

Moral, and Velázquez in 2003 [7]. Soon thereafter, the relationship of operator Möbius

transforms of CMV matrices to the study of orthogonal rational functions (ORFs) on the

unit circle was studied in work of Velázquez [37]. We recall these relationships in Section

2 to motivate the following construction, as well as to prove a coefficient stripping

formula for Caratheodory functions associated to bases of ORFs.

Our approach to MCMV in the context of reflectionless operators is based

on the functional model for the same, developed initially for Jacobi matrices by

Sodin and Yuditskii [35] and later adapted for Schur functions and CMV matrices by

Peherstorfer and Yuditskii [25]. Using the ideas developed by Eichinger and Yuditskii

for GMP matrices (the Jacobi analog of MCMV matrices, cf. [9, 39]) and comparing

this construction to that of Velázquez proves one direction of the equivalences in

Theorems 1.4, 1.5, and 1.6. We review the functional model for CMV matrices and reveal

the corresponding MCMV structure in Section 3.

Having motivated our class of MCMV matrices and shown that finite-gap CMV

matrices correspond to periodic MCMV matrices, we perform a direct spectral analysis

for periodic MCMV matrices after reviewing the corresponding classical analysis of

CMV matrices (cf., e.g., [30–32]) in Section 4. We also analyze the structure of a general

MCMV matrix in Section 4.3.
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Finally, we use the tools developed in Sections 2 through 4 to completely resolve

the proofs of Theorems 1.4, 1.5, and 1.6 in Section 5.

2 Orthogonal Rational Functions

The aim of this section is to establish a coefficient stripping formula for Caratheodory

functions associated to bases of ORFs. Our main result, Theorem 2.2, is an analog of

the Stieltjes expansion for m-functions of Jacobi matrices [32, Theorem 3.2.4] and of

Peherstorfer’s formula for OPUC [30, Theorem 3.4.2]. It will play an important role

in Section 4 where we seek to solve the direct spectral problem for periodic MCMV

matrices.

2.1 The Szegő recursion

Given a nontrivial (i.e., of infinite support) probability measure ν on ∂D, one obtains the

monic orthogonal polynomials �k := �k(z, ν) by orthogonalizing the family {1, z, z2, . . . }
in L2(dν). The �k’s are known to satisfy a recurrence relation of the form

�k+1(z) = z�k(z)− ak�∗
k(z) (2.1)

for some sequence {ak}k∈N of numbers in D. Though it may look strange, we purposely

write −ak in (2.1) so that the ak’s coincide with the Schur parameters (introduced in

Section 1.2). Following [30], we shall also refer to the ak’s as Verblunsky coefficients

and recall there is a one-to-one correspondence between such sequences (in DN) and

nontrivial probability measures on ∂D.

�∗
k is the reversed polynomial, that is,

�∗
k(z) = zk�k(ẑ).

While the notation of ∗ is convenient, it is ambiguous. It depends on the class

Lk := span{1, z, . . . , zk}
and has a different meaning for Lk and Lj when k �= j. Note that the operation ϕ 
→ zkϕ(ẑ)

acts as an involution on the subspace Lk. We shall also use this abuse of notation for

bases of ORFs (where naturally zk is substituted by the Blaschke product corresponding

to the poles of the first k basis elements). Applying ∗ for the class Lk+1 to (2.1) yields the

so-called Szegő recursion
[
�k+1(z)

�∗
k+1(z)

]
=
[

1 −ak

−ak 1

][
z 0

0 1

][
�k(z)

�∗
k(z)

]
. (2.2)
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For the orthonormal polynomials ϕk := �k/‖�k‖, this recursion takes the form

[
ϕk+1(z)

ϕ∗k+1(z)

]
= U(−ak)

[
z 0

0 1

][
ϕk(z)

ϕ∗k(z)

]
(2.3)

with U(·) as in (1.10).

2.2 Coefficient stripping for ORFs

Let z0 = 0 and fix a sequence of points {zk}∞k=1 in D violating the Blaschke condition,

that is,

∑

k

(1− |zk|) = ∞. (2.4)

Note that (2.4) is trivially satisfied if supk |zk| < 1 (which will always be the case in our

setting). Recall that by {Bk} we denote the family of finite Blaschke products

B0(z) = 1, Bk(z) =
k∏

j=1

bzj
(z).

Given a nontrivial probability measure ν on ∂D, let {ϕk}k∈N be the corresponding

sequence of orthonormal rational functions obtained by orthogonalizing the family

{Bk}k∈N in L2(dν). With Lk := span{ϕj : 0 ≤ j ≤ k}, the associated ∗-operator is now

defined by ϕ∗(z) = Bk(z)ϕ(ẑ) for ϕ ∈ Lk. Defining

η2
k := 1− |zk|2

and choosing the right unimodular constants in the normalization (in particular, ϕ0 ≡ 1),

the ϕk’s satisfy the recurrence relation (see [5, Theorem 4.1.3] and [37])

[
ϕk+1(z)

ϕ∗k+1(z)

]
= 1− zkz

1− zk+1z

ηk+1

ηk
U(−ak)

[
bzk

(z) 0

0 1

][
ϕk(z)

ϕ∗k(z)

]
. (2.5)

The rational functions ψk of the second kind are defined by

ψ0 ≡ 1, ψk(z) =
∫

(ϕk

(
eit)− ϕk(z))

eit + z

eit − z
dν

(
eit), k ≥ 1
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and satisfy almost the same recurrence relation as ϕk, namely

[
ψk+1(z)

−ψ∗
k+1(z)

]
= 1− zkz

1− zk+1z

ηk+1

ηk
U(−ak)

[
bzk

(z) 0

0 1

][
ψk(z)

−ψ∗
k (z)

]
. (2.6)

Note that the coefficients ak in (2.5)–(2.6) belong to D and are explicitly given by

ak =
〈

1− zkz

z− zk+1
, ϕk

〉

ν

/〈
zk − z

zk+1 − z
, ϕ∗k

〉

ν

; (2.7)

cf. [5, Theorem 4.1.2]. Conversely, starting from arbitrary coefficients {ak}k∈N ∈ DN one

can generate a sequence of rational functions by (2.5) and show that they are orthogonal

with respect to some probability measure ν on ∂D. This is the content of the following

known results:

Theorem 2.1. [5, Theorems 8.1.4 and 9.2.1] Suppose {zk} ∈ DN violates the Blaschke

condition, that is, (2.4) holds. Given a sequence {ak} ∈ DN, define the rational functions

{ϕk}k∈N (with ϕ0 ≡ 1) by (2.5) and let νk denote the Bernstein–Szegő approximant

dνk =
1− |zk|2
|eit − zk|2

1

|ϕ∗k(eit)|2
dt

2π
. (2.8)

Then the associated Caratheodory function Fνk
can be written as

Fνk
(z) = ψ∗

k (z)/ϕ∗k(z) (2.9)

and νk converges weakly to some probability measure ν, which, in turn, is the unique

measure of orthogonality for {ϕk}. In particular,

lim
k→∞

Fνk
(z) = Fν(z) (2.10)

uniformly on compact subsets of D.

Note that if zk ≡ 0, then (2.5) reduces to the standard Szegő recursion (2.2). Just

as for OPUC, there is a one-to-one correspondence between coefficient sequences {ak} ∈
DN and nontrivial probability measures on ∂D. In fact, the theory for ORFs generalizes

the one for OPUC. We mention in passing that the assumption (2.4) ensures the measure

ν of orthogonality be unique.
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We are now ready to derive the promised coefficient stripping formula. Let

z0 = 0, z1, . . . , zp−1 be a finite number of points in D and consider the sequence {zk}k∈N
obtained by periodic extension of the initial p values (i.e., zk+p = zk for all k). Note that

in this situation the Blaschke condition is trivially violated. Let

Yk(z) =
[

ψk(z) ϕk(z)

−ψ∗
k (z) ϕ∗k(z)

]
; in particular, Y0 =

[
1 1

−1 1

]

and define

M(z) :=
[

M11(z) M12(z)

M21(z) M22(z)

]
= Y0

[
bz0

(z) 0

0 1

]
U(a0) · · ·

[
bzp−1

(z) 0

0 1

]
U(ap−1)Y−1

0 . (2.11)

Our result then reads as follows:

Theorem 2.2. Let Fν be the Caratheodory function associated to the sequence {ak}k∈N
and suppose F(1)

ν corresponds to the shifted sequence {ak+p}k∈N. Then

Fν(z) = M11(z)F(1)
ν (z)+M12(z)

M21(z)F(1)
ν (z)+M22(z)

(2.12)

and M can be expressed in terms of the ORFs and the rational functions of the second

kind by

M(z) = 1

2

[
ψp(z)+ ψ∗

p(z) ψ∗
p(z)− ψp(z)

ϕ∗p(z)− ϕp(z) ϕp(z)+ ϕ∗p(z)

]
. (2.13)

Proof. Due to (2.5) and (2.6), we have

Yk+1(z) = 1− zkz

1− zk+1z

ηk+1

ηk
U(−ak)

[
bzk

(z) 0

0 1

]
Yk(z).

Iterating p times, starting from k = p − 1, the factors in front of the U’s cancel (due to

telescoping) and it follows that

Yp(z) = W(z)Y0, (2.14)
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where W is the transfer matrix

W(z) := W(z, {zk}, {ak}) = U(−ap−1)

[
bzp−1

(z) 0

0 1

]
· · ·U(−a0)

[
bz0

(z) 0

0 1

]
. (2.15)

Using a superscript (l) for the objects related to to the shifted sequence {ak+lp}k∈N, we

obtain in a similar way that

Y(1)
np (z) = W(n)(z) · · ·W(1)(z)Y0

and

Y(n+1)p(z) = W(n)(z) · · ·W(1)(z)W(z)Y0.

Hence,

Y(n+1)p(z) = Y(1)
np (z)Y−1

0 W(z)Y0

and considering the second row of this identity (or rather its transpose) yields

[
ψ∗

(n+1)p(z)

ϕ∗(n+1)p(z)

]
= (

jY−1
0 W(z)Y0j

)ᵀ
[(

ψ
(1)
np

)∗
(z)

(
ϕ

(1)
np
)∗

(z)

]
, j =

[
1 0

0 −1

]
. (2.16)

To see that

(
jY−1

0 W(z)Y0j
)ᵀ = M(z) (2.17)

with M as defined in (2.11), we use that Y0j = 2jY−1
0 , Yᵀ

0 = 2Y−1
0 , and jU(−a)j = U(a)ᵀ.

Due to (2.9) and (2.10), we now obtain (2.12) by passing to the limit as n → ∞ in

(2.16). Finally, the identity (2.13) follows directly from (2.14) and (2.17). �

If the sequence {ak} is periodic (or periodic up to a rotational phase) and the

period matches the period of the sequence {zk}, then our result simplifies and (2.12)

turns into a quadratic equation for Fν . The result becomes particularly simple if we

pass from the relation for Caratheodory functions to the one for Schur functions:

Corollary 2.3. Suppose {ak}k∈N is periodic up to a rotational phase with period p and

phase −2ϑ , and let fν denote the associated Schur function; see (1.28). If

T(z) = U(a0)

[
bz1

(z) 0

0 1

]
U(a1) · · ·

[
bzp−1

(z) 0

0 1

]
U(ap−1)

[
bz0

(z) 0

0 1

][
e−iϑ 0

0 eiϑ

]
, (2.18)
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then
[

fν

1

]
∼ T(z)

[
fν

1

]
. (2.19)

Proof. Start by recalling that z0 = 0 so that bz0
(z) = z. Due to the Schur algorithm, we

see that multiplying a Schur function by a unimodular constant leads to multiplication

of the associated Schur parameters by the same constant. Using the fact that f (1)
ν has

Schur parameters {ak+p}k∈N and since

ak+p = e−2iϑak,

it follows that fν = e2iϑ f (1)
ν . Thus (2.19) follows from (2.12) and (1.28). �

3 The Functional Model

In the last two decades a significant amount of progress has been made in under-

standing reflectionless one-dimensional operators as being related to multiplication

operators on certain subspaces of Hardy spaces associated to multiply-connected

Riemann surfaces. We broadly refer to this construction as a “functional model” for

the associated operators. In this section, we first recall the requisite definitions to

develop such models, followed by the specific model of Peherstorfer–Yuditskii for

almost-periodic CMV matrices, and finally associate to this our model for MCMV

matrices.

3.1 Hardy spaces of character automorphic functions

Fix a finite-gap set E ⊂ ∂D. By means of the Koebe–Poincaré uniformization theorem,

the spectral complement in the Riemann sphere C \ E is uniformized by the disk D; that

is, there exists a Fuchsian group � and a meromorphic function z : D → C \ E with the

following properties:

1. ∀z ∈ C \ E ∃ ζ ∈ D : z(ζ ) = z,

2. z(ζ1) = z(ζ2) ⇐⇒ ∃ γ ∈ � : ζ1 = γ (ζ2).

We fix a normalization point λ∗ ∈ ∂D \ E and assume that z(0) = λ∗ and that (−1, 1) is

mapped onto the connected component of ∂D \E containing λ∗. Due to this choice, there
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exists a fundamental domain F for the action of �, which is symmetric with respect to

complex conjugation, that is,

F = {ζ : ζ ∈ F}, γ−1(ζ ) = γ (ζ ) := γ (ζ ), γ ∈ �. (3.1)

It follows that

z(ζ ) = z(ζ )−1; (3.2)

in particular, if ζ0 ∈ F is such that z(ζ0) = 0, then z(ζ0) = ∞.

We denote by �∗ the group of unitary characters of �; that is, group homomor-

phisms from � into T := R/2πZ. By the covering space formalism, � is group isomorphic

to the fundamental group π1(C \ E), and so �∗ ∼= Tg (where g + 1 is the number of gaps

of E).

Let H2 = H2(D) denote the usual Hardy space of the unit disk. For α ∈ �∗, we

consider the Hardy space of character automorphic functions

H2(α) := {
f ∈ H2 : f ◦ γ = eiα(γ )f ∀ γ ∈ �

}

equipped with the standard H2 inner product

〈 f , g〉 =
∫ 2π

0
f (eit)g(eit)

dt

2π
.

The group � also acts on ∂D; moreover, there exists a measurable fundamental set for

this action [27]. In this sense we can define the larger space L2(α) as the space of those

functions f : ∂D → C, which are square integrable and α-automorphic:

L2(α) := {
f : ∂D → C : ‖f ‖2 < ∞, f ◦ γ = eiα(γ )f ∀ γ ∈ �

}
.

Naturally, H2(α) ⊂ L2(α) via the identification of a function f ∈ H2 with its radial limit

function on the boundary.

For finite-gap sets E, a fundamental result of Widom [38] implies that H2(α) is

nontrivial for all α ∈ �∗. This in fact applies to all subsets E ⊂ C of so-called Parreau–

Widom type (see, e.g., [14] for details). By continuity of the point evaluation functional,

H2(α) admits a family of reproducing kernels {kα(ζ , ζ1)}ζ1∈D such that

〈 f , kα( · , ζ1)〉 = f (ζ1) ∀ f ∈ H2(α). (3.3)
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By the reproducing property and nontriviality of H2(α), it follows that kα(ζ1, ζ1) > 0. We

may thus define the corresponding normalized vectors by

Kα(ζ , ζ1) = kα(ζ , ζ1)√
kα(ζ1, ζ1)

and note that

〈 f , Kα( · , ζ1)〉 = f (ζ1)

Kα(ζ1, ζ1)
∀ f ∈ H2(α). (3.4)

We will sometimes abbreviate kα
ζ1

(ζ ) := kα(ζ , ζ1) and Kα
ζ1

(ζ ) := Kα(ζ , ζ1). Since f ∈ H2(α)

implies f (ζ ) ∈ H2(α), we have

Kα(ζ , ζ1) = Kα(ζ , ζ1); (3.5)

in particular, Kα(ζ1, ζ1) = Kα(ζ1, ζ1). We shall make frequent use of (3.5) (as well as (3.8)

below) in our computations.

For finite-gap sets E, the map α 
→ Kα(ζ1, ζ1) is continuous for every ζ1 ∈ D. This

property is in fact responsible for the almost-periodic structure of the CMV matrices in

TCMV(E), see Theorem 3.4 below. We mention in passing that this type of continuity in

the character is known to hold for all Parreau–Widom sets E ⊂ C satisfying the so-called

Direct Cauchy Theorem (see, e.g., [14]).

For a fixed ζ1 ∈ D we denote by

b(ζ , ζ1) := eiφ
∏

γ∈�

γ (ζ1)− ζ

1− γ (ζ1)ζ

|γ (ζ1)|
γ (ζ1)

(3.6)

the Blaschke product with zeros at the orbit of ζ1 under �, and with φ = φ(ζ1) normalized

such that

b(ζ1, ζ1) > 0. (3.7)

As follows directly from (3.6), (3.1), and our chosen normalization (3.7), we have that

b(ζ , ζ1) = b(ζ , ζ1). (3.8)

If we want to suppress the dependence on ζ , we may also write bζ1
(ζ ) = b(ζ , ζ1). Note

that bζ1
is related to the potential-theoretic Green’s function GC\E(z, z1) of the domain

C \ E with pole at z1 = z(ζ1) by

− log
∣∣bζ1

(ζ )
∣∣ = GC\E

(
z(ζ ), z1

)
. (3.9)
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14038 J. S. Christiansen et al.

Moreover, bζ1
is character automorphic with some character μζ1

, that is,

bζ1
(γ (ζ )) = eiμζ1 (γ )bζ1

(ζ ) ∀ γ ∈ �. (3.10)

Interestingly, since E ⊂ ∂D,

log |z| = GC\E(z,∞)− GC\E(z, 0).

Thus we may represent the uniformization z as a ratio of distinguished Blaschke

products:

z(ζ ) = eiφ0
b(ζ , ζ0)

b(ζ , ζ0)
, (3.11)

where z(ζ0) = 0 as before and φ0 ∈ T is some phase. Since z is automorphic, it follows

that μζ0
= μζ0

; we will abbreviate this common character by μ0.

In the coming subsections, we will study multiplication by this uniformization

map z as a linear operator on L2(α) with respect to different bases. To this end, we

require a technical lemma on reproducing kernels that allows us to effectively compute

residues. We first recall the following orthogonal decomposition of H2(α):

Lemma 3.1 ([35]). For ζ1 ∈ D, we have

Kbζ1
(α) := H2(α)� bζ1

H2(α − μζ1
) = span{kα

ζ1
}. (3.12)

Proof. Using the reproducing kernel property, it is clear that kα
ζ1
∈ Kbζ1

(α). Conversely,

let f ∈ H2(α) and suppose f ⊥ kα
ζ1

. Then

0 = 〈 f , kα
ζ1
〉 = f (ζ1)

and since f is character automorphic, f (γ (ζ1)) = 0 for all γ ∈ �. The standard

factorization theorem for H2 functions and a comparison of the characters now imply

that f ∈ bζ1
H2(α − μζ1

). �

Lemma 3.2. For ζ1 ∈ D, let bζ1
and μζ1

be as above. If f ∈ L2(α) is such that bζ1
f ∈

H2(α + μζ1
), then for ζ2 �= ζ1 we have

〈 f , Kα
ζ2
〉 = f (ζ2)

Kα(ζ2, ζ2)
− (bζ1

f )(ζ1)

Kα+μζ1 (ζ1, ζ1)

Kα+μζ1 (ζ2, ζ1)

bζ1
(ζ2)Kα(ζ2, ζ2)

. (3.13)
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Proof. By our assumptions and Lemma 3.1,

g := bζ1
f −

〈
bζ1

f , K
α+μζ1
ζ1

〉
K

α+μζ1
ζ1

∈ bζ1
H2(α).

Since 〈Kα+μζ1
ζ1

, bζ1
Kα

ζ2
〉 = 0, we have on the one hand that

〈
g, bζ1

Kα
ζ2

〉
=
〈
bζ1

f , bζ1
Kα

ζ2

〉
− 0 = 〈

f , Kα
ζ2

〉
.

On the other hand, as g/bζ1
∈ H2(α), we also have

〈
g, bζ1

Kα
ζ2

〉 = 〈
g/bζ1

, Kα
ζ2

〉 = f (ζ2)

Kα(ζ2, ζ2)
− (bζ1

f )(ζ1)

Kα+μζ1 (ζ1, ζ1)

Kα+μζ1 (ζ2, ζ1)

bζ1
(ζ2)Kα(ζ2, ζ2)

.

This completes the proof. �

3.2 The Peherstorfer–Yuditskii model for CMV matrices

To motivate the MCMV functional model, we first recall the functional model for the

usual CMV matrices. Everything that follows in this section is in some way already

presented in the literature. We try to be quite precise anyway, because we feel that the

meaning of the additional parameter τ ∈ T has not really been discussed yet in terms

of the functional model. Moreover, it will give us an understanding of the notion of

periodicity up to a phase in CMV matrices, which will be important in the later part of

our paper.

Let (α, τ) ∈ �∗ × T and define

xα,τ
0 = Kα

ζ0
, xα,τ

1 = eiτbζ0
Kα−μ0

ζ0
,

yα,τ
0 = eiτ Kα

ζ0
, yα,τ

1 = bζ0
Kα−μ0

ζ0
.

For φ0 given by (3.11) we define, for every l ∈ Z,

xα,τ
2l = e−ilφ0bl

ζ0
bl

ζ0
xα−2lμ0,τ

0 , xα,τ
2l+1 = eilφ0bl

ζ0
bl+1

ζ0
xα−(2l+1)μ0,τ

1 , (3.14)

yα,τ
2l = eilφ0bl

ζ0
bl

ζ0
yα−2lμ0,τ

0 , yα,τ
2l+1 = e−ilφ0bl+1

ζ0
bl

ζ0
yα−(2l+1)μ0,τ

1 . (3.15)

It is straightforward to see that for any τ ∈ T,
{
xα,τ

0 , xα,τ
1

}
and

{
yα,τ

0 , yα,τ
1

}
form two

distinct orthonormal bases of the two-dimensional subspace

Kbζ0bζ0
(α) := span

{
Kα

ζ0
, Kα

ζ0

} = H2(α)� bζ0
bζ0

H2(α − 2μ0). (3.16)
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Iterating this decomposition exhausts H2(α) (and in fact, the larger space L2(α)); in

particular, we have the following:

Proposition 3.3. The systems {xα,τ
k } and {yα,τ

k } for k ∈ N (resp., k ∈ Z) form orthonormal

bases for H2(α) (resp., L2(α)).

Almost-periodic absolutely continuous whole-line CMV matrices with spectrum

E arise exactly as multiplication by z in the basis {yα,τ
k }k∈Z:

Theorem 3.4 (Peherstorfer–Yuditskii [25]). Multiplication by z in the basis {yα,τ
k }k∈Z is

a CMV matrix C(α, τ) with almost-periodic Verblunsky coefficients given by

ak(α, τ) = e−ikφ0A(α − kμ0, τ), ρk(α) = R(α − kμ0), (3.17)

where

A(α, τ) = e−iτ Kα(ζ0, ζ0)

Kα(ζ0, ζ0)
, R(α) = b(ζ0, ζ0)

Kα−μ0(ζ0, ζ0)

Kα(ζ0, ζ0)
=
√

1− |A(α, τ)|2. (3.18)

Remark. Peherstorfer and Yuditskii actually studied the family of Schur functions

f α,τ given by

f α,τ ◦ z := e−iτ
Kα

ζ0

Kα
ζ0

, (3.19)

but this is equivalent by equality of Schur parameters and Verblunsky coefficients. This

perspective explains the necessity of including the parameter τ ; we wish to completely

classify such Schur functions, not merely classify them up to a rotation.

We can see this theorem via the LM structure by alternating between the basis
{
yα,τ

k

}
and the dual basis

{
xα,τ

k

}
. Denoting

�k(α, τ) :=
[

ak(α, τ) ρk(α)

ρk(α) −ak(α, τ)

]
,

we have the following:

Lemma 3.5. With notation as above,

[
yα,τ

0

yα,τ
1

]
= �0(α, τ)

[
xα,τ

0

xα,τ
1

]
, z

[
xα,τ

1

xα,τ
2

]
= �1(α, τ)

[
yα,τ

1

yα,τ
2

]
. (3.20)
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Proof. Since Kα
ζ0

, Kα

ζ0
∈ Kbζ0bζ0

(α), it follows from the reproducing kernel property that

yα,τ
0 = A(α, τ)xα,τ

0 + R(α)xα,τ
1 , xα,τ

0 = A(α, τ)yα,τ
0 + R(α)yα,τ

1 .

Using (3.11), the lemma follows by algebraic manipulations. �

Proof of Theorem 3.4. We can shift the relations in the previous lemma to see that,

taking

L := L(α, τ) =
⊕

l∈Z
�2l(α, τ), M := M(α, τ) =

⊕

l∈Z
�2l+1(α, τ),

then M sends the basis {yα,τ
k }k∈Z to {z(xα,τ

k )}k∈Z and L sends {xα,τ
k }k∈Z to {yα,τ

k }k∈Z. Thus

we have that multiplication by z in the basis {yα,τ
k } is given by C = LM, which is a CMV

matrix with precisely the Verblunsky coefficients ak(α, τ) as above. �

We conclude by pointing out that the CMV matrix C(α, τ) is periodic if and only

if φ0 ∈ 2πQ and there exists N ≥ 1 such that μ0N = 0�∗ . If only the latter holds (i.e.,

φ0 /∈ 2πQ), then C(α, τ) is periodic up to a phase with phase e−iNφ0 .

3.3 A modified basis suited for periodicity

We have seen in the previous subsection that whether the isospectral torus of CMV

matrices consists of periodic or almost periodic operators is related to whether there

exists N ≥ 1 such that
(
bζ0

bζ0

)N can be lifted to a single-valued function on C \ E.

In this section we will study a basis associated to Blaschke products that have this

property, and by definition the corresponding multiplication operator in this basis will

be periodic. To fix the notation, let

�z := {z0 = 0, z1, . . . , zn−1} ∈ Dn

and take a point ζl ∈ z−1(zl) for l = 0, 1, . . . , n− 1. Define

B := B�z =
n−1∏

l=0

bζl
(3.21)

and let β := β�z denote its character. Our condition on the vector �z is that β is a half-

period (i.e., 2β = 0�∗ ).
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14042 J. S. Christiansen et al.

Remark. The Ahlfors function shows by example that a function as in (3.21) having

half-period character indeed exists: recall that w∞ denotes the Ahlfors function of C \E
and the point ∞. If E has g + 1 gaps, w∞ has exactly g zeros in D, say z1, . . . , zg, and

one zero at ∞. Moreover, |w∞| = 1 on E and |w∞| < 1 in C \ E. From this it follows

that the pullback of zw∞ to the uniformization, that is, w∞ := z(w∞ ◦ z), is a Blaschke

product as in (3.21) with n = g+1; furthermore, since zw∞ is a single-valued function on

C \E, the function w∞ has trivial character β�zE = 0�∗ (and, in particular, 2β�zE = 0�∗ ). See

Appendix A for a more detailed discussion.

Denoting by zl the pullback of bzl
to the uniformization, that is,

zl := bzl
◦ z, (3.22)

we see, by the same arguments used to prove (3.11), that there exists a certain phase φl

such that

zl(ζ ) = eiφl
b(ζ , ζl)

b(ζ , ζl)
. (3.23)

Hence the characters of bζl
and bζl

coincide. Let us abbreviate them by μl. If we denote

B∗(ζ ) := B(ζ ) = ∏n−1
j=0 bζj

(ζ ), then this implies that the character of BB∗ is 2β. By

our assumption,

2β = 2(μ0 + μ1 + · · · + μn−1) = 0�∗ .

This allows us to decompose H2(α) by iterations of the finite-dimensional subspace

KBB∗(α) := span
{
Kα

ζ0
, Kα

ζ0
, Kα

ζ1
, Kα

ζ1
, · · · , Kα

ζn−1
, Kα

ζn−1

}
= H2(α)�BB∗H2(α), (3.24)

without shifting the character. This lack of shift is ultimately what will lead to

periodicity up to a phase.

Our strategy is as follows: suppose we have a vector �z ∈ Dn with associated

Blaschke product B as above having character β a half-period. Similar to CMV matrices,

we will have one step comparing symmetric pairs ζl, ζl corresponding to shifting from a

pole zl inside the disk to its symmetric point ẑl outside the disk; this corresponds to the

representation

span
{
Kα

ζl
, Kα

ζl

} = H2(α)� bζl
bζl

H2(α − 2μl), (3.25)

which we can iterate to exhaust KBB∗(α) as follows:

KBB∗(α) = H2(α)� bζ0
bζ0

(
H2(α − 2μ0)� bζ1

bζ1

(
H2(α − 2(μ0 + μ1))� · · · )

)
.
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As in the CMV case, we will be able to act on even steps by a 2 × 2 block-diagonal

operator M to alternate between dual bases respecting the symmetric poles on each

two-dimensional subspace H2(α)�bζl
bζl

H2(α−2μl). However—and this is the difference

relative to CMV matrices—in the odd steps we wish to pass from the pole ζl to the new

pole ζl+1. Of course, since Kα
ζk

/∈ H2(α) � bζl
bζl

H2(α − 2μl) when ζk �= ζl, something new

is required to perform this shift. In this sense, the fundamental lemma allowing for our

analysis is the following simple realization:

Lemma 3.6. For any α ∈ �∗ and with zl, zk ∈ D and ζl, ζk as above, we have

z− zk

z− zl
bζl

Kα−μl

ζk
∈ H2(α)� bζl

bζl
H2(α − 2μl). (3.26)

Proof. For f ∈ H2(α − 2μl), we have

1− zkz

1− zlz
bζl

f ∈ H2(α − μl).

Since bζl
is unimodular on the boundary, the adjoint in H2 of multiplication by bζl

(and

consequently z) is multiplication by b−1
ζl

(respectively z−1). Thus, by computing adjoints

and applying the reproducing property, one has

〈
bζl

bζl
f ,

z− zk

z− zl
bζl

Kα−μl

ζk

〉
=
〈
1− zkz

1− zlz
bζl

f , Kα−μl

ζk

〉
= 0,

as claimed. �

Now the way ahead is clear: we apply Lemma 3.6 to expand the shifted

reproducing kernel in terms of the reproducing kernels for the previous pole. Let α ∈ �∗

and ζl, ζk ∈ D be as above and define

cα
1 (ζk, ζl) = e−iφl

zk − zl

1− |zl|2
Kα(ζk, ζl)

bζl
(ζk)Kα−μl(ζk, ζk)

, (3.27)

cα
2 (ζk, ζl) = −cα

1 (ζk, ζl)
Kα(ζk, ζl)

Kα(ζk, ζl)
, (3.28)

where at the removable singularity ζk = ζl we take

cα
1 (ζl, ζl) =

Kα(ζl, ζl)

bζl
(ζl)K

α−μl(ζl, ζl)
, (3.29)

cf. (3.23). Then
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Lemma 3.7.

z− zk

z− zl
bζl

Kα−μl

ζk
= cα

1 (ζk, ζl)K
α

ζl
+ cα

2 (ζk, ζl)K
α
ζl

, (3.30)

1− zkz

1− zlz
bζl

Kα−μl
ζk

= cα
2 (ζk, ζl)K

α

ζl
+ cα

1 (ζk, ζl)K
α
ζl

. (3.31)

Proof. That such a decomposition exists is precisely the content of Lemma 3.6 and

(3.25). Since Kα
ζl

is orthogonal to bζl
Kα−μl

ζk
, we find that the coefficient in front of Kα

ζl

in (3.30) is given by

〈
z−zk
z−zl

bζl
Kα−μl

ζk
, bζl

Kα−μl
ζk

〉

〈
Kα

ζl
, bζl

Kα−μl
ζk

〉 .

Using Lemma 3.2, (3.23), and that z−zk
z−zl

Kα−μl

ζk
vanishes at ζk, the numerator can be

written as

〈
z− zk

z− zl
Kα−μl

ζk
, Kα−μl

ζk

〉
= − (zl − zk)Kα−μl(ζl, ζk)

Kα(ζl, ζl)

(
bζl

z− zl

)
(ζl)

Kα(ζk, ζl)

bζl
(ζk)Kα−μl(ζk, ζk)

= e−iφl
zk − zl

1− |zl|2
bζl

(ζl)K
α−μl(ζl, ζk)

Kα(ζl, ζl)

Kα(ζk, ζl)

bζl
(ζk)Kα−μl(ζk, ζk)

.

We thus arrive at the expression for cα
1 (ζk, ζl) in (3.27).

Plugging in ζk to (3.30) makes the left-hand side vanish and we deduce that the

coefficient in front of Kα
ζl

is given by cα
2 (ζk, ζl) as in (3.28). Equation (3.31) follows by

applying the operation f (ζ ) 
→ f (ζ ) to (3.30). �

Since the decomposition in the previous lemma is not orthogonal, we do not

immediately get a nice Pythagorean identity; however, if we define

η2
l := 1− |zl|2, (3.32)

then we have that

Lemma 3.8.

|Kα(ζk, ζl)|2 + |bζl
(ζk)Kα−μl(ζk, ζk)|2 = |Kα(ζk, ζl)|2 + |bζl

(ζk)Kα−μl(ζk, ζk)|2. (3.33)
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In particular, for cα
1 , cα

2 defined in (3.27)–(3.28),

|cα
1(ζk, ζl)|2 − |cα

2(ζk, ζl)|2 = η2
k/η2

l . (3.34)

Proof. Note that kα
ζk

simultaneously lives in both H2(α) � bζk
bζl

H2(α − μl − μk)

and H2(α) � bζk
bζl

H2(α − μl − μk). Equation (3.33) follows immediately from the

Pythagorean identity after expanding kα
ζk

in the two orthonormal bases
{
Kα

ζl
, bζl

Kα−μl
ζk

}

and
{
Kα

ζl
, bζl

Kα−μl
ζk

}
.

It remains to show (3.34). With (3.23) in mind, we see that (3.33) is equivalent to

|Kα(ζk, ζl)|2 − |Kα(ζk, ζl)|2
|bζl

(ζk)Kα−μl(ζk, ζk)|2 = 1− |bzl
(zk)|2.

A simple calculation shows that

1− |bzl
(zk)|2 = η2

l η2
k

|1− zlzk|2
(3.35)

and (3.23) implies

|zk − zl|2
|bζl

(ζk)|2 = |1− zlzk|2
|bζl

(ζk)|2 .

Thus we have

|cα
1 (ζk, ζl)|2 − |cα

2 (ζk, ζl)|2 =
|1− zlzk|2

η4
l

|Kα(ζk, ζl)|2 − |Kα(ζk, ζl)|2∣∣bζl
(ζk)Kα−μl(ζk, ζk)

∣∣2 = η2
k

η2
l

,

as claimed. �

Combining all of the above results, we arrive at

Proposition 3.9.

z−1
l

[
z− zl 0

0 z− zk

]⎡
⎣ Kα

ζl

bζl
Kα−μl

ζk

⎤
⎦

= 1

cα
1 (ζk, ζl)

[
−cα

2 (ζk, ζl) 1

η2
k/η2

l cα
2 (ζk, ζl)

][
1− zlz 0

0 1− zkz

]⎡
⎣ Kα

ζl

bζl
Kα−μl

ζk

⎤
⎦. (3.36)
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When ζl = ζk, this simplifies to

⎡
⎣ Kα

ζl

bζl
Kα−μl

ζl

⎤
⎦ = 1

cα
1 (ζl, ζl)

[
−cα

2 (ζl, ζl) 1

1 cα
2 (ζl, ζl)

]⎡
⎣ Kα

ζl

bζl
Kα−μl

ζl

⎤
⎦. (3.37)

Proof. Multiplying the identity (3.36) through by (1−zlz)
−1, the first line of the identity

is simply (3.31). The second line follows from (3.30), the first line, and an application

of (3.34). �

We now have all the tools to show that multiplication by z in L2(α) has the

appropriate structure. Fix (α, τ) ∈ �∗ × T and define the following quantities

A(α, τ ; ζk, ζl) := −e−iτ cα
2 (ζk, ζl)

cα
1 (ζk, ζl)

= e−iτ Kα(ζk, ζl)

Kα(ζk, ζl)
, (3.38)

R(α; ζk, ζl) := 1

|cα
1(ζk, ζl)|

ηk

ηl
=
√

1− |A(α, τ ; ζk, ζl)|2, (3.39)

�(α, τ ; ζk, ζl) :=
[

A(α, τ ; ζk, ζl) R(α; ζk, ζl)

R(α; ζk, ζl) −A(α, τ ; ζk, ζl)

]
. (3.40)

Define also

ωα
k,l := arg

(
cα

1 (ζk, ζl)
)

(3.41)

and note that ωα
l,l = 0 due to our normalization bζl

(ζl) > 0. Then the content of the

previous proposition is that, considering the cases ζk = ζl and ζk = ζl+1, respectively,

⎡
⎣ eiτ Kα

ζl

bζl
Kα−μl

ζl

⎤
⎦ = �(α, τ ; ζl, ζl)

⎡
⎣ Kα

ζl

eiτbζl
Kα−μl

ζl

⎤
⎦ (3.42)

and

e−iφl

[
z−zl
ηl

0

0 z−zl+1
ηl+1

]⎡
⎣ eiτbζl

Kα
ζl

e−iωα
l+1,lbζl

bζl
Kα−μl

ζl+1

⎤
⎦

= �(α, τ ; ζl+1, ζl)

[
1−zlz

ηl
0

0 1−zl+1z
ηl+1

]⎡
⎣ bζl

Kα

ζl

eiτ eiωα
l+1,lbζl

bζl
Kα−μl

ζl+1

⎤
⎦. (3.43)
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We are finally ready to establish our basis. Let

αl := αl−1 − 2μl, α0 := α − μ0, ϑα
l :=

l∑

j=0

ω
αj+μj

j+1,j + φj,

and

Bl :=
l∏

j=1

bζj
, B∗

l :=
l∏

j=1

bζj
, B0 = B∗

0 = 1.

Taking as convention ϑα−1 = 0, B−1 = b−1
ζ0

, B∗−1 = b−1
ζ0

, and ζn = ζ0, we define for 0 ≤ l ≤
n− 1 the functions

xα,τ
2l := e−iϑα

l−1bζ0
BlB

∗
l−1K

αl−1−μl

ζl
, xα,τ

2l+1 := eiτ eiϑα
l bζ0

BlB
∗
l Kαl

ζl+1
, (3.44)

yα,τ
2l := eiτ eiϑα

l−1bζ0
B∗

l Bl−1K
αl−1−μl
ζl

, yα,τ
2l+1 := e−iϑα

l bζ0
B∗

l BlK
αl

ζl+1
. (3.45)

In analog to the CMV case (3.16), they form two different bases of the 2n-dimensional

subspace KBB∗ ; cf. (3.24). Letting p = 2n, we extend this family of functions (for j ∈ Z)

by

xα,τ
2l+jp = (BB∗) je−ijϑα

n−1xα,τ
2l , xα,τ

2l+1+jp = (BB∗) jeijϑα
n−1xα,τ

2l+1, (3.46)

yα,τ
2l+jp = (BB∗) jeijϑα

n−1yα,τ
2l , yα,τ

2l+1+jp = (BB∗) je−ijϑα
n−1yα,τ

2l+1. (3.47)

By iterating the exhaustion (3.24), it isn’t difficult to see that the systems of functions

{xα,τ
k }k∈I and {yα,τ

k }k∈I each form an orthonormal basis of H2(α) for I = N. By [9, Lemma

3.5], it follows that they also form a basis of L2(α) when I = Z.

Let us comment on the meaning of the unimodular constants appearing in the

definitions above. First of all, we can choose the unimodular constant freely in the

normalization of the basis functions {x0, x1}. This explains the meaning of the additional

parameter τ . Once this normalization is fixed, the normalization of the following basis

functions is already determined: comparing (3.36) and (3.43), we see that—apart from

the additional parameter τ—the main difference between the constant matrix on the

right-hand side of (3.36) and the matrix �(α, τ ; ζl, ζl+1) in (3.43) is that the latter has

positive off-diagonal entries. This has been achieved by adding the phase eiωα
l+1,l to the

reproducing kernels. These phases accumulate with each step as the phases eiϑα
l .

Define now the periodic up to a phase Verblunsky coefficients {ak(α, τ ; �z)} by

a2l−1(α, τ ; �z) := e−2iϑα
l−1A(αl−1, τ ; ζl, ζl),

a2l(α, τ ; �z) := e−i(φl+2ϑα
l−1)A(αl−1 − μl, τ ; ζl+1, ζl),

0 ≤ l ≤ n− 1, (3.48)
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and

am+jp(α, τ ; �z) = e−2ijϑα
n−1am(α, τ ; �z), −1 ≤ m ≤ 2n− 2, j ∈ Z, (3.49)

ρk(α; �z) :=
√

1− |ak(α, τ ; �z)|2, k ∈ Z. (3.50)

Then multiplication by z in our modified basis is represented by an MCMV matrix with

the above parameters:

Theorem 3.10. Let C = C(α, τ ; �z) be the periodic up to a phase CMV matrix with

Verblunsky coefficients ak(α, τ ; �z), and let D0 be the 2n-periodic diagonal matrix given

by (1.4). Then with respect to the basis {yα,τ
k }k∈Z of L2(α), multiplication by z is

represented by the MCMV matrix b−D0
(C).

Proof. Denote by

�k(α, τ ; �z) :=
[

ak(α, τ ; �z) ρk(α; �z)

ρk(α; �z) −ak(α, τ ; �z)

]
. (3.51)

We use liberally the following two simple observations: that diagonal matrices com-

mute, and that, for a ∈ D, ρ = √
1− |a|2, and θ0, θ1 ∈ T,

[
e−iθ0 0

0 eiθ1

][
a ρ

ρ −a

][
e−iθ1 0

0 eiθ0

]
=
[

e−i(θ0+θ1)a ρ

ρ −ei(θ0+θ1)a

]
.

Let 0 ≤ l ≤ n−1. With the above facts in hand, it is then clear that (3.42) is equivalent to

⎡
⎣ eiτ eiϑα

l−1K
αl−1
ζl

e−iϑα
l−1bζl

K
αl−1−μl

ζl

⎤
⎦ = �2l−1(α, τ ; �z)

⎡
⎣ e−iϑα

l−1K
αl−1

ζl

eiτ eiϑα
l−1bζl

K
αl−1−μl
ζl

⎤
⎦.

Multiplying both sides by bζ0
Bl−1B∗

l−1 = e−iφ0zbζ0
Bl−1B∗

l−1, we get that

e−iφ0z

[
xα,τ

2l−1

xα,τ
2l

]
= �2l−1(α, τ ; �z)

[
yα,τ

2l−1

yα,τ
2l

]
. (3.52)
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Since in the context of (3.43) we have eiφl = eiφl I (where I is the 2 × 2 identity matrix),

that equation can also be written as

[
z−zl
ηl

0

0 z−zl+1
ηl+1

]⎡
⎣eiτ eiϑα

l−1bζl
K

αl−1−μl
ζl

e−iϑα
l bζl

bζl
Kαl

ζl+1

⎤
⎦ = �2l(α, τ ; �z)

[
1−zlz

ηl
0

0 1−zl+1z
ηl+1

]⎡
⎣e−iϑα

l−1bζl
K

αl−1−μl

ζl

eiτ eiϑα
l bζl

bζl
Kαl

ζl+1

⎤
⎦.

Multiplying both sides by bζ0
Bl−1B∗

l−1 = eiφ0z−1bζ0
Bl−1B∗

l−1 and rearranging yields

eiφ0z−1

[
z−zl
ηl

0

0 z−zl+1
ηl+1

][
yα,τ

2l

yα,τ
2l+1

]
= �2l(α, τ ; �z)

[
1−zlz

ηl
0

0 1−zl+1z
ηl+1

][
xα,τ

2l

xα,τ
2l+1

]
. (3.53)

Extending to all l follows similarly from the definitions.

Denote now by D0 := D0(�z) the 2n-periodic diagonal matrix in (1.4), let

ηD0
= √

1− D0D∗
0, and fix

L :=
⊕

l∈Z
�2l(α, τ ; �z), M :=

⊕

l∈Z
�2l+1(α, τ ; �z),

where �k acts on the two-dimensional subspace {δk, δk+1}. Combining the statements

(3.52) and (3.53) above, we have shown the following:

L
(
1− zD∗

0

)
η−1

D0
M �yα,τ = η−1

D0
(z− D0) �yα,τ ,

where �yα,τ is shorthand notation for the vector (yα,τ
k )k∈Z. Since the operators η−1

D0
, z−D0,

and 1 − zD0
∗ commute with M (for they are orthogonal sums of multiples of I along the

odd terms), taking C = LM we have

(
1− ηD0

(z− D0)−1C(1− zD0
∗)η−1

D0

)
�yα,τ = 0, (3.54)

which can be rearranged as

(
z− ηD0

(1+ CD0
∗)−1(C + D0)η−1

D0

)
�yα,τ = 0.

Thus, in the basis {yα,τ
k }, multiplication by z is given by b−D0

(C). �

Of course, (3.36) and (3.37) in combination with the exhaustion (3.24) without

shifted character imply a transfer matrix relation in terms of the reproducing kernels.
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To see explicitly this relation, first note that, denoting as shorthand ak = ak(α, τ ; �z),

ρk = ρk(α; �z), and U(ak) as in (1.10), we can rewrite (3.52)–(3.53) in the following way:

[
e−iφ0z 0

0 1

]
U(a2l+1)

[
1 0

0 eiφ0z−1

][
xα,τ

2l+2

yα,τ
2l+2

]
=
[

yα,τ
2l+1

xα,τ
2l+1

]
, (3.55)

1− zl+1z

1− zlz

ηl

ηl+1

[
1 0

0 z−1
l

][
eiφ0z−1 0

0 1

]
U(a2l)

[
1 0

0 e−iφ0z

][
zl+1 0

0 1

][
yα,τ

2l+1

xα,τ
2l+1

]
=
[

xα,τ
2l

yα,τ
2l

]
.

(3.56)

Again using the notation that zn = z0 = 0, ηn = η0, etc., and denoting

T(z; �z, {ak}, ϑα
n−1) := U(a0)

[
bz1

(z) 0

0 1

]
U(a1)

[
bz1

(z) 0

0 1

]
U(a2)

[
bz2

(z) 0

0 1

]
· · ·

· · ·U(a2n−1)

[
bn−1(z) 0

0 1

]
U(a2n)

[
z 0

0 1

]
U(a2n+1)

[
z 0

0 1

][
e−iϑα

n−1 0

0 eiϑα
n−1

]
(3.57)

and

B(z) = z
n−1∏

j=1

bzj
(z) =

√
det T(z; �z, {ak}), (3.58)

we arrive at the following monodromy relation:

Theorem 3.11. The reproducing kernels satisfy the phased monodromy relation

1

B(z)
T
(
z; �z, {ak}, ϑα

n−1

)
[

xα,τ
0

eiφ0yα,τ
0

]
= (BB∗)−1

[
xα,τ

0

eiφ0yα,τ
0

]
. (3.59)

Proof. This follows from iterating (3.55)–(3.56) over a full period of size p = 2n, since

the multiplier terms telescope and

xα,τ
2n = BB∗e−iϑα

n−1xα,τ
0 , yα,τ

2n = BB∗eiϑα
n−1yα,τ

0 . �

Remark. In terms of projective lines, (3.59) is, up to a phase, precisely the relation

(2.19) for the Schur functions (3.19).

We are now ready to give a detailed explanation for introducing the matrix �(ϑ)

in Definition 1.1. In our extension (3.47) of the vectors
{
yα,τ

l

}2n−1
l=0 to a basis of L2(α),
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we include the phase eiϑα
n−1 in order to represent the multiplication operator by z as an

operator Möbius transform of a CMV matrix C(α, τ ; �z); specifically, the phase is needed

to make the off-diagonal entries of �l(α, τ ; �z) in its LM factorization positive. The price

we pay is that the corresponding matrix is merely periodic up to a phase. If we instead

chose the extension of multiplying by (BB∗) j without the phase, then the corresponding

operator would be periodic. This alternative basis, say
{
yα,τ

per,l

}
, is related to

{
yα,τ

l

}
in the

following way:

�yα,τ
per = �

(
ϑα

n−1

)∗ �yα,τ . (3.60)

Thus the conjugacy by �(ϑ) in Definition 1.1 allows us to relate the periodic represen-

tation of multiplication by z to an honest CMV matrix.

A particular goal of our construction is to obtain a map from �∗ × T to

TMCMV(E, �z, λ∗), see Corollary 3.13 below. For the final step we need a lemma whose

full statement will not be used but we believe is of interest in its own right. It will

enable us to identify the sign of �A in each gap. As a by-product, we can show that

�E having the same sign in each gap is a consequence of the character of the Ahlfors

function being trivial rather than merely being a half-period. First, we need to introduce

some notation. Let g + 1 be the number of gaps of E and let λ−j , λ+j (for 0 ≤ j ≤ g)

denote the gap edges such that one can pass from λ−j to λ+j by traversing the j-th gap

counterclockwise. Moreover, let [λ−j , λ+j ] denote the closed arcs induced by this order

and suppose that λ∗ belongs to the gap (λ−0 , λ+0 ). Finally, let {γ̃j}gj=1 be a set of generating

loops for π1(C \ E) passing through the zeroth and j-th gaps and let {γj}gj=1 denote the

corresponding elements in �; cf. [32, Section 9.6].

Lemma 3.12. With the notation from above, suppose that λ ∈ (λ−j , λ+j ) and pick a point

ζ ∈ z−1(λ). Then we have that

B(ζ )B∗(ζ ) = e−iβ(γj)|B(ζ )|2. (3.61)

In particular, B(ζ )B∗(ζ ) is positive in the gap containing λ∗, and it is positive in all gaps

if and only if β = 0�∗ .

Proof. Recall that the action of γ̃j corresponds to a reflection with respect to the gap

(λ−j , λ+j ) and the gap (λ−0 , λ+0 ). Therefore, since (−1, 1) is mapped onto (λ−0 , λ+0 ), we see

that for λ ∈ (λ−j , λ+j ) and ζ ∈ z−1(λ), we have that ζ = γj(ζ ); see also [32, Theorem 9.6.3].

Thus, by means of our normalization,

b(ζ , ζ1) = b(ζ , ζ1) = e−iμζ1 (γj)b(ζ , ζ1),
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and hence

b(ζ , ζ1)b(ζ , ζ1) = e−iμζ1 (γj)|b(ζ , ζ1)|2,

which proves (3.61). Since the gap (λ−0 , λ+0 ) is mapped onto (−1, 1), it is invariant under

complex conjugation. This shows by the same line of arguments the positivity statement

for that gap. �

Remark. Note that since {γj}gj=1 generate �, it follows that β being a half-period is

equivalent to the statement that eiβ(γj) = ±1 for 1 ≤ j ≤ g.

We are now finally ready to prove the following corollary of our construction:

Corollary 3.13. Let C and D0 be as in Theorem 3.10, and set

A := A(α, τ) = �(ϑα
n−1)∗b−D0

(
C(α, τ)

)
�(ϑα

n−1). (3.61)

Then A ∈ Aper(�z) and σ(A) = E. Moreover, with �A as in (1.12),

�A ◦ z = BB∗ + 1

BB∗ (3.63)

and

�A(A) = S2n + S−2n. (3.64)

In particular, A ∈ TMCMV(E, �z, λ∗). In the special case �z = �zE, we have additionally that

�A = �E.

Proof. The first statement follows from the discussion above. The fact that σ(A) = E

is clear since A is the matrix of multiplication by z. If we set T̃ = B−1T, then Theorem

3.11 states that (BB∗)−1 is an eigenvalue of T̃. As det T̃ = 1, we thus obtain (3.63).

Lemma 3.12 shows that �A(λ∗) > 0. Finally, (3.64) is a direct consequence of the fact

that multiplication by BB∗ corresponds to the action of S2n in the basis {yα,τ
per,l}l∈Z. �

Remark. Formula (3.63) reiterates the relevance of our additional normalization

�A(λ∗) > 0 in (1.17). In general, in our periodic extension

(
yα,τ

per

)
k+p = BB∗(yα,τ

per

)
k (3.65)
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one could just as well have chosen cBB∗ for any unimodular constant c to obtain a

periodic operator. But in order for �A to be real, it is crucial that

B(ζ )B∗(ζ ) = B(ζ )B∗(ζ ). (3.66)

To maintain this property, we see that c must be real; hence, c = ±1 are the only possible

choices for c. The choice of c = 1 corresponds to the aforementioned normalization.

4 Direct Spectral Theory

In the previous section, we saw that the functional model developed by Peherstorfer

and Yuditskii to represent finite-gap almost-periodic CMV matrices has corresponding

representations as periodic MCMV matrices. In this section, we develop the necessary

tools to address the converse: that any periodic MCMV matrix arises from such a

functional model.

For periodic CMV matrices C ∈ TCMV(E), the bijective nature of this correspon-

dence is by now classical (cf. (4.4) below); we recall the elements of its construction in

Section 4.1. A key component of this correspondence is a set of spectral data associated

to the one-sided restriction C+, called the divisor or Dirichlet data, which, together with

the discriminant, allows one to uniquely recover the spectral measure and hence the

operator C+. We will adapt this construction to periodic MCMV matrices in Section 4.2,

culminating in the uniqueness statement Proposition 4.6. Finally, Section 4.3 explores

the block structure (1.7) of general MCMV matrices and its invariance under certain

Möbius transformations.

4.1 The isospectral torus of periodic CMV matrices

We briefly recall aspects of the spectral theory for periodic CMV matrices as can be

found, for instance, in [31, Chapter 11]. Let {ak}k∈Z be a periodic sequence with even

period p = 2n and let C be the corresponding whole-line CMV matrix. If we define the

discriminant by

�C(z) = tr

(
U(a0)

[
z 0

0 1

]
U(a1)

[
1 0

0 1
z

]
· · ·U(ap−2)

[
z 0

0 1

]
U(ap−1)

[
1 0

0 1
z

])
,

then the spectrum of C is given by

E := σ(C) = �−1
C
(
[−2, 2]

)
.

This spectrum is purely absolutely continuous and of multiplicity two. Moreover, there

are p critical points {ci}pi=1 on ∂D (i.e., zeros of �′
C ) which all satisfy |�C(ci)| ≥ 2.
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Therefore, the set �−1
C
(
(−2, 2)

)
can be partitioned into p non-intersecting open arcs.

The connected components of the complement of this set on ∂D are called the gaps. If a

gap consists only of a single point (which is the case if |�C(ci)| = 2), we refer to it as a

closed gap. Otherwise, as before, the gap is called open. Let g + 1 denote the number of

open gaps and let us fix some labeling of the open gaps as in the end of Section 3.

As we have seen, the isospectral torus TCMV(E) is a g + 1-dimensional torus. In

particular, the spectrum does not uniquely determine the operator C. In order to get the

full spectral data to solve the inverse problem, we consider the half-line operator C+
with spectral measure ν. One can show there are explicit rational functions u, v such

that, for a suitable branch of the square root, the associated Caratheodory function is

given by

Fν(z) =
v(z)+

√
�2

C(z)− 4

u(z)
. (4.1)

It is known that u has precisely one zero in each gap of E, and if u(z) = 0, then√
�2

C(z)− 4 is either −v(z) or v(z). A zero of u for which the numerator in (4.1) does

not vanish corresponds to an eigenvalue of C+. Note that for closed gaps, the numerator

always vanishes. Let {xj}gj=0 be the set of all zeros of u, which lie in open gaps, and let

us write (xj, 1) if xj is an eigenvalue of C+ and (xj,−1) otherwise. Then the spectrum

together with the divisor D = {(xj, εj)}gj=0 form the full spectral data and determine C
completely. In fact, if we define

D(E) = {
(xj, εj) : xj ∈

[
λ−j , λ+j

]
, εj = ±1, 0 ≤ j ≤ g

}
/ ∼ (4.2)

with the identifications (λ±j ,−1) ∼ (λ±j , 1), then D(E) equipped with the product topology

of circles is homeomorphic to �∗×T and hence also to TCMV(E). Inspired by results in the

framework of Jacobi matrices [35], this has been generalized in [25] to the much more

general class of Parreau–Widom sets E ⊂ ∂D satisfying the Direct Cauchy Theorem. The

homeomorphism

A : D(E) → �∗ × T (4.3)

is called the generalized Abel map; it is the map that completes the following diagram:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/18/14016/5735227 by TU
 W

ien Bibliothek user on 07 M
arch 2024



Finite-Gap CMV Matrices 14055

In the finitely connected setting, the Abel map is well understood (see, e.g.,

[19, 29]). The connection to spectral theory of Jacobi matrices goes back to Akhiezer

[2]; see also [3, 18, 20].

4.2 Spectral theory for periodic MCMV matrices

In this section we will perform a spectral analysis for MCMV matrices that are periodic

up to a phase. The spectral data will be given by the discriminant and zeros of a certain

function that is explicitly defined in terms of the ORFs. For CMV matrices it is easy to

see that the leading coefficient of the discriminant is positive, and the discriminant is

always of maximal degree. For MCMV matrices, however, the situation is more involved;

we shall clarify the degree issue in Lemma 4.3.

Let us start by introducing the concept of a half-line MCMV matrix. This

will be the main object of study in the present section. Recall that given a vector

�z = {z0, . . . , zn−1}, an MCMV matrix A = A({ak}, ϑ ; �z) ∈ A(�z) is defined by

A = �(ϑ)∗b−D0
(C)�(ϑ),

where D0 is a diagonal matrix depending only on �z, C = C({ak}) is the CMV matrix

associated to {ak}k∈Z, and �(ϑ) is a certain diagonal matrix; cf. Definition 1.1. Given

A ∈ Aper(�z), we define the half-line MCMV matrix A+ by

A+ := b−D+(C+), (4.4)

where C+ = C+({ak}k∈N) is the half-line CMV matrix with Verblunsky coefficients {ak}k∈N
and D+ is the diagonal operator D+ = diag{z0, z1, z1, . . . , zn−1, z0, z0, z1, . . .}. We point out

that when A ∈ Aper(�z), the corresponding representing CMV matrix C is periodic up to

a phase. To see this, let us first observe that a CMV matrix is periodic up to a phase

with phase e−2iϑ if and only if �(ϑ)∗C�(ϑ) is periodic. By definition of A and with the

expression (B.4) for the inverse of an operator Möbius transform in mind, we see that

C = bD0

(
�(ϑ)A�(ϑ)∗

)
.

Using that D0 and �(ϑ) are diagonal and therefore commute, it follows that

�(ϑ)∗C�(ϑ) = bD0
(A). Since A and D0 are periodic, so is bD0

(A), and thus C is periodic

up to a phase.

Due to [37, Theorem 5.4], the measure ν of orthogonality for the family of

orthonormal rational functions related to the poles {z0, z1, z1, . . . , zn−1, z0, z0, z1, . . .} and

Verblunsky coefficients {ak}k∈N is precisely the spectral measure for A+ (and the
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cyclic vector δ0). The main result of this section will be an explicit expression for the

associated Caratheodory function Fν , analogous to (4.1).

Let p = 2n and fix a sequence {aj}p−1
j=0 and a phase ϑ . Let T be the monodromy

matrix defined by (2.18). Moreover, let us define

Mϑ(z) := M(z)

[
cos ϑ i sin ϑ

i sin ϑ cos ϑ

]
, Wϑ(z) :=

[
e−iϑ 0

0 eiϑ

]
W(z), (4.6)

where M and W = W(0) are the matrices defined by (2.11) and (2.15), respectively.

Keeping in mind that bz0
(z) = z, the shape of Mϑ is such that

Y0

[
z 0

0 1

]
T(z) = Mϑ(z)Y0

[
z 0

0 1

]
. (4.7)

This follows from the commutant relation

Y0

[
e−iϑ 0

0 eiϑ

]
=
[

cos ϑ i sin ϑ

i sin ϑ cos ϑ

]
Y0. (4.8)

Hence, if we consider the sequence {aj}j∈N, which is obtained by extending {aj}p−1
j=0 in

such a way that aj+kp = e−2ikϑaj, then due to Corollary 2.3 and (1.28) the associated

Caratheodory function satisfies

[
Fν(z)

1

]
∼ Mϑ(z)

[
Fν(z)

1

]
. (4.9)

Using again the simple observation

U(e2iϑa) =
[

eiϑ 0

0 e−iϑ

]
U(a)

[
e−iϑ 0

0 eiϑ

]
,

we find that

W(k)(z) =
[

eikϑ 0

0 e−ikϑ

]
W(0)(z)

[
e−ikϑ 0

0 eikϑ

]
.
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Thus,

W(k−1)(z) · · ·W(0)(z) =
[

eikϑ 0

0 e−ikϑ

]
Wϑ(z)k. (4.10)

Moreover, (2.17) and (4.8) show that jY−1
0 Wϑ(z)ᵀY0j = Mϑ(z). So we conclude that

tr Wϑ = tr Mϑ = tr T. (4.11)

Recalling that

M(z) = 1

2

[
ψp(z)+ ψ∗

p(z) ψ∗
p(z)− ψp(z)

ϕ∗p(z)− ϕp(z) ϕp(z)+ ϕ∗p(z)

]
,

a direct computation shows that

Mϑ(z) =
[

Mϑ
11(z) Mϑ

12(z)

Mϑ
21(z) Mϑ

22(z)

]
= 1

2

[
ψp,ϑ(z)+ ψ∗

p,ϑ(z) ψ∗
p,ϑ(z)− ψp,ϑ(z)

ϕ∗p,ϑ(z)− ϕp,ϑ(z) ϕp,ϑ(z)+ ϕ∗p,ϑ(z)

]
(4.12)

for the rotated rational functions ϕp,ϑ = e−iϑϕp, ψp,ϑ = e−iϑψp, ϕ∗p,ϑ = eiϑϕ∗p, and

ψ∗
p,ϑ = eiϑψ∗

p. The discriminant �A defined by (1.12) can therefore be written as

�A(z) = 1

B(z)
tr Mϑ(z) = ψp,ϑ(z)+ ψ∗

p,ϑ(z)+ ϕp,ϑ(z)+ ϕ∗p,ϑ(z)

2B(z)
, (4.13)

where

B(z) = z
n−1∏

j=1

bzj
(z) =

√
det Mϑ(z). (4.14)

What follows is a detailed study of properties of �A. This will enable us to give a

complete description of the spectral measure of A+ by means of a uniquely associated

divisor D.

With (4.10) in mind, the analog of the Lyapunov exponent (see, e.g., [24]) in our

periodic setting is given by

L(z) = L
(
z, {aj}p−1

j=0 , ϑ
) = lim

k→∞
1

kp
log ‖Wϑ(z)k‖, (4.15)

provided the limit exists. This is, in fact, a Lyapunov exponent in a traditional sense,

since the matrix Wϑ(z) is, up to a unitary factor (cf. (4.10)), the periodic propagator
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for the ORFs φp,ϑ , ψp,ϑ analogous to, for example, (2.14). We shall shortly relate this

Lyapunov exponent to the discriminant. The lemma below is critical when showing that

�−1
A ([−2, 2]) ⊂ ∂D.

Lemma 4.1. For every z ∈ C \ {ẑj : 0 ≤ j ≤ n − 1}, the limit L(z) exists and satisfies

L(z) ≥ 0.

Remark. In fact, we will see that L(z) = 0 if and only if z ∈ �−1
A ([−2, 2]) = σ(A) ⊂ ∂D.

Proof. Let λ1(z), λ2(z) denote the eigenvalues of Wϑ(z); we tacitly suppress the

dependence of these values on ϑ and {aj}p−1
j=0 . By the spectral radius formula, we

have

lim
k→∞

‖Wϑ(z)k‖1/kp = max{|λ1(z)|, |λ2(z)|}1/p. (4.16)

Moreover, since the inequality |det N| ≤ ‖N‖2 holds for every 2 × 2 matrix N and

det Wϑ = B2, we see that on C \ (D ∪ {ẑj : 0 ≤ j ≤ n − 1}) the limit in (4.15) exists

and satisfies L ≥ 0. To show that this also holds inside D, we first note that due to (2.14)

and (4.10),

Wk
ϑ = 1

2

[
ϕkp,ϑ + ψkp,ϑ ϕkp,ϑ − ψkp,ϑ

ϕ∗kp,ϑ − ψ∗
kp,ϑ ϕ∗kp,ϑ + ψ∗

kp,ϑ

]
. (4.17)

Hence,

|ϕ∗kp,ϑ(z)| ≤ ∥∥Wϑ(z)k [ 1
1

] ∥∥ ≤ ‖Wϑ(z)k‖√2,

and we can apply the Christoffel–Darboux formula (see [5, Theorem 3.1.3])

l−1∑

j=0

|ϕj,ϑ(z)|2 = |ϕ∗l,ϑ(z)|2 − |ϕl,ϑ(z)|2
1− |bzl

(z)|2

to deduce that 1− |z|2 ≤ |ϕ∗kp,ϑ(z)|2 since bzkp
(z) = z and |ϕ0| = 1. For fixed z ∈ D we thus

have a uniform lower bound on ‖Wϑ(z)k‖ and this implies that L(z) ≥ 0. �

The following lemma collects several important properties of �A. It is the analog

of [31, Theorem 11.1.1] for CMV matrices and thus we seek to keep the proofs rather

short by merely indicating where adaptations are needed.
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Lemma 4.2.

(i) �A(1/z) = �A(z),

(ii) L(z) = 1
p log |B(z)| + 1

p log

∣∣∣∣
�A(z)+

√
�A(z)2−4

2

∣∣∣∣,
(iii) �A(z) ∈ [−2, 2] implies that z ∈ ∂D,

(iv) for all critical points c ∈ ∂D (i.e., zeros of �′
A), we have that |�A(c)| ≥ 2.

Proof. (i) The key observation is that B(z)−1Wϑ(z) ∈ SU(1, 1) if z ∈ ∂D. Using that the

trace of a matrix in this class is real, the statement follows by analytic continuation.

(ii) Let again λ1(z), λ2(z) be the eigenvalues of Wϑ(z) and denote by λ̃1(z), λ̃2(z)

the eigenvalues of B(z)−1Wϑ(z). Then we have

B(z)λ̃i(z) = λi(z), i = 1, 2

and thus, by (4.16),

L(z) = log lim
k→∞

‖Wϑ(z)k‖1/kp = 1

p
log |B(z)| + 1

p
log(max{|λ̃1(z)|, |λ̃2(z)|}).

Since λ̃1, λ̃2 are solutions of λ̃2 −�A(z)λ̃+ 1 = 0, we obtain (ii).

(iii) Suppose that �A(z) ∈ [−2, 2]. Then
∣∣∣�A(z)+

√
�A(z)2−4

2

∣∣∣ = 1 and so, by (ii),

L(z) = 1

p
log |B(z)|.

Since L(z) ≥ 0, this implies that |z| ≥ 1. But if |z| > 1 then, by (i), we have

�A(z) = �A(1/z) /∈ [−2, 2].

(iv) This is the same as to say that for x ∈ (−2, 2), the roots of �A − x are simple.

The proof is identical to that of [31, Theorem 11.1.1]. �

It follows directly from the above lemma that E := �−1
A ([−2, 2]) ⊂ ∂D is a finite-

gap set with at most p gaps. As before, we denote by g + 1 the number of open gaps in

E and by λ±j their gap edges. In what follows, it will be important to know that �A is a

rational function of degree p. But, in fact, an even stronger statement is true:

Lemma 4.3. Fix j and let q be the number of times zj appears in the vector �z. Then

|(bq
zj

�A)(zj)| > C > 0, (4.18)
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where the constant C depends only on �z. Moreover,

(b−q
zj

�A)(ẑj) = (bq
zj

�A)(zj). (4.19)

Proof. Note that (4.19) follows from the fact that �A is real. Let us first assume that

q = 1 and zj = z0 = 0. In that case, (4.18) is equivalent to |(tr T)(0)| > C. It will be more

convenient to consider the product

Tr(z) :=
[

z 0

0 1

]
T(z)

[
z 0

0 1

]−1

which clearly has the same trace as T. When z = 0, we have

Tr(0) =
[

0 0

0 1

]
U(a0)

[
−z1 0

0 1

]
· · ·

[
0 0

0 1

]
U(ap−1)

[
e−iϑ 0

0 eiϑ

]
. (4.20)

Set

V(z) = U(a0)

[
bz1

(z) 0

0 1

]
· · ·U(ap−3)

[
bzn−1

(z) 0

0 1

]

and notice that V is a transfer matrix associated to the poles z1, . . . , zn−1 and with

coefficients −a0, . . . ,−ap−3 (in reverse order). Therefore, by (2.14), a short computation

shows that

V = 1

2

[
ϕ̃ + ψ̃ ϕ̃ − ψ̃

ϕ̃∗ − ψ̃∗ ϕ̃∗ + ψ̃∗

]

for the corresponding ORFs of degree p− 2. Due to (4.20), it suffices to show that

∣∣∣∣∣
[
0 1

]
V(0)U(ap−2)

[
0

1

]∣∣∣∣∣ =
∣∣∣∣∣

1

2ρp−2

(
ϕ̃∗(0)+ ψ̃∗(0)+ ap−2

(
ϕ̃∗(0)− ψ̃∗(0)

))
∣∣∣∣∣

is uniformly bounded from below.

For arbitrary zj, due to cyclic rotation, we would have obtained the same as

above, just with ORFs associated to different coefficients, respectively a different

measure. Recall that we can always “push” the matrix
[

eiϑ 0
0 e−iϑ

]
to the end of the product

by use of the commutant relation

U(e2iϑa) =
[

eiϑ 0

0 e−iϑ

]
U(a)

[
e−iϑ 0

0 eiϑ

]
.
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Hence it suffices to show that

∣∣∣ϕ̃∗(zj)+ ψ̃∗(zj)+ a
(
ϕ̃∗(zj)− ψ̃∗(zj)

)∣∣∣ (4.21)

is uniformly bounded from below for arbitrary ORFs whose poles are supported on the

set {ẑi : 0 ≤ i ≤ n− 1, i �= j}.
It is well-known that any Caratheodory function F satisfies the uniform bounds

1− |z|
1+ |z| ≤ |F(z)| ≤ 1+ |z|

1− |z| ,
1− |z|
1+ |z| ≤ Re F(z) ≤ 1+ |z|

1− |z| .

Since supj |zj| < 1, this gives positive constants c1, c2 such that for every Caratheodory

function F and every zj, we have that c1 < |F(zj)| < c2. By the same reasoning, using the

Christoffel–Darboux relation it is not hard to see that there exists a function m(r) such

that for all measures ν, all n, and all z obeying |z| < r, we have |ϕ∗n(z, ν)| > m(r) > 0; cf.

[5, Lemma 9.3.1]. Hence we obtain a constant c3 such that |ϕ̃∗(zj)| > c3 uniformly.

Writing F̃ as shorthand notation for the Caratheodory function ψ̃∗/ϕ̃∗, we see

that

∣∣∣ϕ̃∗(zj)+ ψ̃∗(zj)+ a
(
ϕ̃∗(zj)− ψ̃∗(zj)

)∣∣∣ = ∣∣ϕ̃∗(zj)
∣∣∣∣(1+ a)+ F̃(zj)(1− a)

∣∣.

Let us first assume that |1− a| < (1+ c2)−1 ≤ 1/2. Then standard estimates show that

∣∣ϕ̃∗(zj)
∣∣∣∣(1+ a)+ F̃(zj)(1− a)

∣∣ > c3.

If |1− a| ≥ (1+ c2)−1, we obtain the estimate

∣∣ϕ̃∗(zj)(1− a)
∣∣
∣∣∣∣
1+ a

1− a
+ F̃(zj)

∣∣∣∣ ≥
∣∣ϕ̃∗(zj)(1− a)

∣∣Re
(

1+ a

1− a
+ F̃(zj)

)

≥ ∣∣ϕ̃∗(zj)(1− a)
∣∣Re F(zj) >

c1c3

1+ c2
> 0

since the real part of 1+a
1−a is positive.

Finally, if q > 1 then (4.20) splits into shorter products of the form

[
0 0

0 1

]
Ṽ(z)

[
0 0

0 1

]

and the same arguments can be applied to each single factor. The proof is complete. �
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Combining the two previous lemmas, we obtain the following explicit represen-

tation for �A:

Lemma 4.4. Let (λ−, λ+) be a gap of E such that �A > 0 in this gap and choose some

point λ∗ ∈ (λ−, λ+) as normalization for the uniformization z of C \ E. Following the

notation of (3.21), we then have that

�A(z) = �(z)+�(z)−1, (4.22)

where � ◦ z =∏n−1
j=0 bζj

bζj
.

Remark. The sign of �A is related to our choice of eiϑ as the square root of e2iϑ .

Indeed, as already mentioned, by the linearity of the trace, the choice −eiϑ would have

led to −�A(z). Hence, if �A < 0 in all gaps, we simply choose from the very beginning

−eiϑ to be in the setting of the lemma.

Proof. Consider the function

H(z) = log

∣∣∣∣∣∣

�A(z)+
√

�2
A(z)− 4

2

∣∣∣∣∣∣
−

n−1∑

j=0

(
GC\E(z, zj)+ GC\E(z, ẑj)

)
.

It follows from Lemma 4.3 that H has no poles and thus is harmonic in C \ E.

Furthermore, since E := �−1
A ([−2, 2]), we have that H(z) = 0 for z ∈ E. So by the maximum

principle, H ≡ 0. In particular, by an application of (3.9) we get that

log

∣∣∣∣∣∣

�A

(
z(ζ )

)+
√

�2
A

(
z(ζ )

)− 4

2

∣∣∣∣∣∣
= − log |� ◦ z| .

This defines � ◦ z up to a unimodular constant, c. Since �A is real, we see that this

constant must be ±1. Due to the specific normalization and Lemma 3.12, it thus follows

that c = 1. �

We are now ready to characterize the spectrum of A+. Since det Mϑ = B2, (4.9)

and (4.12) show that the Caratheodory function Fν can be written as

Fν(z) = v(z)+√
�A(z)2 − 4

u(z)
, (4.23)
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where u, v are explicitly given by

u(z) = ϕ∗p,ϑ(z)− ϕp,ϑ(z)

B(z)
, v(z) = ψp,ϑ(z)+ ψ∗

p,ϑ(z)− ϕp,ϑ(z)− ϕ∗p,ϑ(z)

2B(z)
,

and where the branch of the square root is chosen such that Fν(0) = 1 and then extended

analytically to C \ E. In order to show that v and iu are both real-valued on ∂D, first

recall that ϕ∗k(z) = Bk(z)ϕk(ẑ) by definition. Using the fact that Bp = B2, we thus see that

ϕ∗p,ϑ = B2ϕp,ϑ on ∂D. By a similar reasoning we obtain the same identity for ψ∗
p,ϑ and it

follows that

v(eit) ∈ R and u(eit) ∈ iR. (4.24)

The next step is to write dν(t) = νac(t)
dt
2π

+ dνs(t), with dνs singular to dt/2π .

Using the standard inversion formula [34, Theorem 2.5.5], we see that νs is a finite sum

of point masses and νac is explicitly given by

νac(t) = lim
r↑1

Re Fν(reit) =
√

�A(eit)2 − 4

u(eit)
≥ 0, eit ∈ E. (4.25)

The following lemma will be important to characterize the point masses of ν.

Lemma 4.5. u(z) has all its zeros in the set of gaps of E, one in each gap.

Proof. First we show that all zeros of u lie on ∂D. Since |ϕp,ϑ | < |ϕ∗p,ϑ | on D and |ϕp,ϑ | >
|ϕ∗p,ϑ | on C \ D (see [5, Corollary 3.1.4.]), the assertion ϕp,ϑ(z) = ϕ∗p,ϑ(z) (i.e., u(z) = 0)

implies that z ∈ ∂D.

Next we show that at a point eit0 ∈ ∂D with ϕp,ϑ(eit0) = ϕ∗p,ϑ(eit0), we have

| tr �A(eit0)| ≥ 2. Start by observing that for a matrix N ∈ SL(2, R) with N21 = 0, one has

| tr N| ≥ 2. Indeed, an application of the inequality of arithmetic and geometric means

shows that | tr N| ≥ 2
√

det N = 2. Set M̃ = B(eit0)−1Mϑ(eit0). From (2.11) and (4.8), we see

that M̃ can be written as M̃ = Y0UY−1
0 for some U ∈ SU(1, 1). Viewed as fractional linear

transformations, Y0 maps the unit disk D into the right half-plane H+ and U preserves

the unit disk; thus, conjugating M̃ further by the matrix

R =
[

i 0

0 1

]
,
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we can transform M̃ into an element of SL(2, R). It remains to note that, due to (4.12),

M̃21 is zero and this property (in addition to the determinant and the trace) is preserved

under conjugation by R.

Since �A is of degree p, there are exactly p gaps of E. As the square root in (4.25)

is analytically extended, it has alternating signs on consecutive gaps. In order to retain

the positivity, the denominator must also admit a sign change and this implies there is

a zero of u(z) in every gap. Since u is of degree at most p, we find that it has exactly one

zero per gap. �

Inspired by the above lemma, let us define a divisor

D = {(xj, εj)}gj=0 ∈ D(E) (4.26)

with {xj} accounting for the zeros of u(z) in the open gaps and where εj = 1 if xj is a

mass point of the measure ν and −1 otherwise.

Proposition 4.6. We can uniquely recover the measure ν from the divisor D, the vector

�z, and the spectrum E = σ(A). Specifically, the absolutely continuous part of ν is given

by (4.25) and if εj = 1, the point mass at xj has the weight

ν({xj}) =
√
|�A(xj)

2 − 4|
|u′(xj)|

. (4.27)

Proof. Given E and �z, Lemma 4.4 shows that �A is uniquely determined up to a sign by

the key properties (i)–(iii) listed after Definition 1.2. However, this choice of sign becomes

irrelevant here since the critical points and the value of the expression �2
A(z) − 4 as in

(4.25) and (4.27) are invariant under the map �A 
→ −�A.

We now explain how to recover the measure ν (and hence Fν ) from �A and the

divisor D. If xj is a zero of u, then—using again that det Mϑ = B2—we see that �A(xj)
2 −

4 = v(xj)
2. Hence the sign of the square root determines whether or not xj is a point

mass of ν. If the numerator in (4.23) does not vanish, it is given by 2
√

�2
A(xj)− 4 and the

weight of the point mass can be computed as

ν({xj}) = lim
r↑1

1− r

2
Re Fν(rxj) =

√
|�A(xj)

2 − 4|
|u′(xj)|

,

cf. [34, Theorem 2.5.5]. This proves (4.27), and we have already seen that the absolutely

continuous part of ν is given by (4.25).
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Note that up to a multiplicative constant, u is defined by its zeros. This constant

is fixed by (4.24) and the fact that ν is a probability measure. Hence, D, E, and �z
determine ν uniquely. �

For finite-gap sets E, Lemma 4.5 (and the comment thereafter) defines a map

from {A ∈ Aper(�z) : σ(A) = E} to D(E): namely, given A ∈ Aper(�z), we consider the

associated half-line operator A+ = b−D+(C+), compute its Caratheodory function Fν as

in (4.23), and find and label the zeros of u(z) as in (4.26). Proposition 4.6 shows the map

A+ 
→ D ∈ D(E) is one-to-one:

Corollary 4.7. The map G : TMCMV(E, �z, λ∗) → D(E) assigning a divisor (4.26) to a

periodic MCMV matrix A ∈ TMCMV(E, �z, λ∗) is one-to-one.

Proof. Let A1, A2 ∈ TMCMV(E, �z, λ∗) and suppose G(A1) = G(A2). By Proposition 4.6,

A1,+ and A2,+ have the same spectral measure ν (for δ0). Thus, our choice of �z determines

the same sequence of ORFs, and thus the same (half-line) sequence of phase-periodic

Verblunsky coefficients {ak}k∈N having phase e−2iϑ by (2.7). Extending this sequence to

Z by phase-periodicity (which we must have by (4.6) and the surrounding discussion)

generates an infinite sequence of Verblunsky coefficients determined uniquely by

{ak}2n−1
k=0 and e−2iϑ . As �A(·,ϑ ;�z) = −�A(·,ϑ+π ;�z), precisely one of ϑ or ϑ + π will yield a

discriminant with �A(λ∗) > 0. Since A1, A2 ∈ TMCMV(E, �z, λ∗), it follows that they are

generated by the same parameters {ak}2n−1
k=0 , ϑ , and �z, that is, A1 = A2. �

The fact that this map is also onto is true in general, and will be shown for the

special choice �z = �zE in Section 5.

4.3 The structure of a general MCMV matrix

In this section we demonstrate the “block-CMV” nature of MCMV matrices as in (1.7), as

well as a structural stability under taking Möbius transformations related to the points

in the generating vector �z. This structure will be critical to understanding our main

theorems; indeed, in light of viewing the discriminant as in (1.23), the Magic Formula

would be a complete mystery without developing some understanding of the structure

of bzj
(A) for a general MCMV matrix A ∈ A(�z).

Our analysis further illustrates the similarities between our MCMV matrices

and their self-adjoint analog, GMP matrices. First, GMP matrices are block-Jacobi;

below, we show the band structure (1.7) of an MCMV matrix in Lemma 4.8. Additionally,
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one of the characteristic properties of GMP matrices is that they are stable under

taking resolvents (cf. [39, Definition 1.12]); the analogous statement for MCMV is

Proposition 4.9. The consequences for the Magic Formula in the setting of (1.23) are

the content of Theorem 4.10. Finally, we use all of this structure to prove a uniqueness

result for certain rational functions of our MCMV matrices in Proposition 4.11; this will

be used to prove the Magic Formula in the end.

Let us again fix a vector �z ∈ Dn having z0 = 0, and recall that D0 denotes

the diagonal operator defined in (1.4) and C denotes a general CMV matrix. We begin

by proving the block structure of an MCMV matrix A; up to conjugation by diagonal

matrices, we may consider instead the simpler operator

Ã := (1+ CD∗
0)−1(C + D0). (4.28)

Let us split Ã into matrix blocks of size 2n × 2n and denote the blocks by Ãij. For

simplicity, we assume throughout this section that �z is such that zj �= zk for j �= k.

Without this assumption, the block structure below will split into smaller blocks, but

we emphasize that the below proofs can be readily adapted to the case of an arbitrary

vector �z ∈ Dn with z0 = 0 at the cost of adapting the results to apply to multiple sub-

blocks of arbitrary even block-sizes.

Lemma 4.8. Ã is band structured and Ãij = 0 if |i − j| > 1. Moreover, there exists

vectors ui, vi ∈ C2n such that

Ãi−1,i = viδ
ᵀ
2n+1, Ãi,i+1 = uiδ

ᵀ
0 . (4.29)

In particular,

Ã0,2n =
(

1

ρ2n−1

[
1 0

]
U(−a2n−2)

[
1 0
0 −zn−1

]
· · ·

[
1 0
0 −z1

]
U(−a1)

[
− 1

z1
0

0 1

]
U(−a0)

[
1
0

])−1

.

(4.30)

Proof. Let

u = (1+ CD∗
0)−1(C + D0)δk

and note that u satisfies the recursion relation

(1+ CD∗
0)u = (C + D0)δk. (4.31)
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The left-hand side of this identity can be written as

[
u2j

u2j+1

]
+ zj

[
a2j

ρ2j

] [
ρ2j−1 −a2j−1

] [u2j−1

u2j

]
+ zj+1

[
ρ2j

−a2j

] [
a2j+1 ρ2j+1

] [u2j+1

u2j+2

]
. (4.32)

Introduce the matrices

Mj =
[

1

0

] [
0 1

]
+ zj

[
a2j

ρ2j

] [
ρ2j−1 −a2j−1

]

and

Nj = −
[

0

1

] [
1 0

]
− zj+1

[
ρ2j

−a2j

] [
a2j+1 ρ2j+1

]

so that (4.32) becomes

Mj

[
u2j−1

u2j

]
− Nj

[
u2j+1

u2j+2

]
.

Since zkn = 0, we see that for j = kn− 1 and j = kn this becomes

Mkn−1

[
u2kn−3

u2kn−2

]
+
[

0

u2kn−1

]
and

[
u2kn

0

]
− Nkn

[
u2kn+1

u2kn+2

]
,

respectively. Hence we see that the recursion for the blocks {u2kn, . . . , u2(k+1)n−1} is

decoupled. The finite band structure and (4.29) is now a direct consequence of the

structure of CMV matrices.

It remains to prove (4.30). Let now u = (1+ CD∗
0)−1(C +D0)δ2n. We are interested

in the block {u0, . . . , u2n−1}. In this case, (4.31) leads to

[
0

0

]
=
[

u0

0

]
− N0

[
u1

u2

]
, Mn−1

[
u2n−3

u2n−2

]
+
[

0

u2n−1

]
=
[

ρ2n−1ρ2n−2

−ρ2n−1a2n−2

]

and for 1 ≤ j < n− 1,

[
0

0

]
= Mj

[
u2j−1

u2j

]
− Nj

[
u2j+1

u2j+2

]
.
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Iterating this leads to

[
u0

0

]
= N0M−1

1 N1 · · ·Nn−2M−1
n−1

([
ρ2n−1ρ2n−2

−ρ2n−1a2n−2

]
−
[

0

u2n−1

])
.

Using the fact that

M0

[
u2n−1

u0

]
=
[

u0

0

]
and Nn−1

[
u2n−1

u0

]
=
[

0

−u2n−1

]
,

we arrive at

[
ρ2n−1ρ2n−2

−ρ2n−1a2n−2

]
=
(

Mn−1N−1
n−2Mn−2 · · ·N−1

0 M0 − Nn−1

)[
u2n−1

u0

]
.

It is straightforward to see that, for 1 ≤ j < n− 1,

N−1
j = −1

ρ2jρ2j+1

(
1

zj+1

[
0

1

] [
1 0

]
+
[

ρ2j+1

−a2j+1

] [
a2j ρ2j

])
.

Let

Mn−1N−1
n−2Mn−2 · · ·N−1

0 = C =
[

c11 c12

c21 c22

]
.

Due to the simple structure of M0 and Nn−1, it follows that

u0 =
ρ2n−2ρ2n−1

c11

and hence it suffices to study C
[

1
0

]
. A direct computation shows that

N−1
0

[
1

0

]
= −1

ρ0ρ1

[
0 ρ1

1 −a1

][
1
z1

0

0 1

][
1

a0

]

and combined with the identities

Mj

[
0 ρ2j−1

1 −a2j−1

]
=
[

1 a2j

0 ρ2j

][
1 0

0 zj

][
1 −a2j−1

−a2j−1 1

]
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and

N−1
j

[
1 a2j

0 ρ2j

]
= −1

ρ2jρ2j+1

[
0 ρ2j+1

1 −a2j+1

]⎡
⎣

1
zj+1

0

0 1

⎤
⎦
[

1 a2j

a2j 1

]
,

this allows us to iterate the procedure. It only remains to comment on the sign and for

this we note that

−
⎡
⎣

1
zj+1

0

0 1

⎤
⎦
[

1 a2j

a2j 1

][
1 0

0 zj

]
=
⎡
⎣

−1
zj+1

0

0 1

⎤
⎦
[

1 −a2j

−a2j 1

][
1 0

0 −zj

]
.

Therefore,

C

[
1

0

]
= 1

ρ0

[
1 a2n−2

0 ρ2n−2

][
1 0

0 zn−1

]
· · ·

[
1 0

0 −z1

]
U(−a1)

[
− 1

z1
0

0 1

][
1

a0

]
,

and hence

[
1 0

]
C

[
1

0

]
= ρ2n−2

[
1 0

]
U(−a2n−2)

[
1 0

0 −zn−1

]
· · ·

· · ·
[

1 0

0 −z1

]
U(−a1)

[
− 1

z1
0

0 1

]
U(−a0)

[
1

0

]
.

This concludes the proof. �

Remark. The assumption that zj �= zk could be weakened to zj �= z0 = 0 for j �= 0 in

this proof without any further changes.

A key feature of the MCMV structure is its stability under Möbius transfor-

mations. Following the notation of Appendix B, we can write the operator Möbius

transform defined in (1.3) as

bS(C) = ηS(1− CS∗)−1(C − S)η−1
S = �U(C),

where

U =
[

1 −S∗

−S 1

][
η−1

S 0

0 η−1
S

]
.
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In particular, this holds for S = zj1, where 1 denotes the identity on �2, that is, bzj
(A) is

the standard Blaschke factor evaluated at A ∈ D�2 :

bzj
(A) = (1− zjA)−1(A− zj). (4.33)

In addition to the usual diagonal operator D0, we likewise define shifted diagonal

operators

Dj = (1− zjD
∗
0)−1(D0 − zj) and Vj =

√
(1− zjD0)−1(1− zjD

∗
0). (4.34)

With this notation, we can explicitly describe how the Blaschke factors associated to

the generating vector �z “shift” MCMV matrices:

Proposition 4.9. Let Dj and Vj be defined as above. Then for any C ∈ D�2 , we have

bzj

(
b−D0

(C)
) = Vjb−Dj

(C)Vj. (4.35)

Proof. Let

U1 =
[

1 −zj

−zj 1

]
and U2 =

[
1 D∗

0

D0 1

][
η−1

D0
0

0 η−1
D0

]
.

Then we have

bzj

(
b−D0

(C)
) = �U1

(�U2
(C)) = �U2U1

(C).

Recalling that ηj =
√

1− |zj|2, it is straightforward to see that

η−1
j U2U1 =

[
1 (D∗

0 − zj)(1− zjD0)−1

(D0 − zj)(1− zjD
∗
0)−1 1

]

×
[
η−1

j η−1
D0

(1− zjD
∗
0) 0

0 η−1
j η−1

D0
(1− zjD0)

]
.

Due to (3.35), we have

(1− zjD0)(1− zjD
∗
0)η2

Dj
= η2

j η2
D0
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and hence

ηjU2U1 =
[

1 D∗
j

Dj 1

]⎡
⎣η−1

Dj
0

0 η−1
Dj

⎤
⎦
[

Vj 0

0 V−1
j

]
.

This concludes the proof. �

Remark. So far we have not used that zj ∈ �z; however, this assumption is important

to retain the banded structure of an MCMV matrix. In particular, since bzj
(zj) = 0,

applying bzj
to A shifts the zeros in D0 by 2j. It follows that S−2jbzj

(A)S2j is again MCMV-

structured (with a new generating vector). Here specifically we use the assumption that

zj �= zk for j �= k: in particular, we have that bzk
(zj) �= 0 for j �= k, which allows us to

apply our proof of Lemma 4.8 to the Blaschke shifts S−2jbzj
(A)S2j.

We have analyzed the block structure and Blaschke shifts of MCMV matrices

in order to understand the Magic Formula in the context of the representation (1.23).

Critical to this understanding is computing off-diagonal blocks of self-adjoint operators

of the form Re(cjbzj
(A)) (cf. (1.24)); this is essentially the content of the next theorem of

this section:

Theorem 4.10. Let �z be such that z0 = 0 and zj �= zk for j �= k, and let A ∈ A(�z).

Then

(
bzk

(A)
)
2(n+k),2k = eiϑ tr

([
1 0

0 0

]
U(a2k)

[
bzk+1

(ẑk) 0

0 1

]
U(a2k+1) · · ·

· · ·
[

1 0

0 bzk−1
(ẑk)−1

]
U(a2(n+k)−2)

[
1 0

0 0

]
U(a2(n+k)−1)

)−1

. (4.36)

In particular,

A2n,0 = eiϑ tr
([

1 0
0 0

]
U(a0)

[
bz1(∞) 0

0 1

]
U(a1) · · ·

[
1 0
0 bzn−1(∞)−1

]
U(an−2)

[
1 0
0 0

]
U(an−1)

)−1
.

(4.37)
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Proof. Equation (36) follows from shifting (4.37) by Proposition 4.9; thus, we only need

to prove (4.37). Note that

Ã2n,0 = tr

(
1

ρ2n−1

[
1 0

0 0

]
U(−a2n−2)

[
1 0

0 −zn−1

]
· · ·

· · ·
[

1 0

0 −z1

]
U(−a1)

[
− 1

z1
0

0 1

]
U(−a0)

[
1 0

0 0

])−1

= tr

(
U(−a2n−1)

[
1 0

0 0

]
U(−a2n−2)

[
1 0

0 −zn−1

]
· · ·

· · ·
[

1 0

0 −z1

]
U(−a1)

[
− 1

z1
0

0 1

]
U(−a0)

[
1 0

0 0

])−1

.

Since tr(N) = tr(jNᵀj), we obtain (4.37) by inserting j2 between all factors. Note that for

the second equality we also used that for arbitrary 2× 2 matrices M and N, one has

tr

(
M

[
1 0

0 0

]
N

[
1 0

0 0

])
= tr

(
M11

[
1 0

0 0

]
N

[
1 0

0 0

])
,

where M11 is the (1, 1)-entry of M. Recalling that bzk
(A) = �(ϑ)∗bzk

(Ã)�(ϑ), the result

follows. �

For the final result of this section, the adaptation of the proof for repeated points

in the vector �z is not straightforward, so we will drop our assumption of distinct zj’s at

this place. By reordering the entries of �z, if needed, we can assume that the entries of

�z with higher multiplicity are ordered consecutively; if zj = zj+1 we will denote both by

zj. For a given vector �z, suppose there are m ≤ n distinct entries zj, and let mj denote

the multiplicity with which the point zj appears in �z, such that m0 + · · ·+mm−1 = n. We

call a rational function � suitable for �z if it is of the form

�(z) = c +
m−1∑

j=0

mj∑

i=1

(
cijbzj

(z)i + cijbzj
(z)−i

)
.

The following result will be used in the proof of Theorem 1.5 and relies fundamentally

on the structure of MCMV matrices obtained in Theorem 4.10.
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Proposition 4.11. Let �z ∈ Dn with z0 = 0, let A ∈ A(�z), and suppose � is a rational

function that is suitable for �z. Then �(A) = 0 implies that �(z) = 0 for all z.

Proof. For the sake of simplicity, let us assume that eiϑ = 1 (the general case is

analogous). The key to the proof is to understand the structure of the powers Ai for

1 ≤ i ≤ m0. Due to Proposition 4.9, the structure of the powers bzj
(A)i will then follow

by shifting. Recall that m0 denotes the multiplicity with which z0 = 0 is represented in

the vector �z. We analyze the structure of the 2n × 2n block of A formed by the entries

{Aij}2n−1
i,j=0 .

Since we have seen that the block structure is obtained by repeated z0 entries,

our 2n × 2n block splits up into m0 − 1 diagonal blocks of size 2 × 2 and a possibly

bigger diagonal block of size 2(n − m0 + 1) × 2(n − m0 + 1). Let us denote the 2 × 2

block matrices by A1
0, . . . , Am0−1

0 and the larger block by A. On each side of the diagonal

blocks Ak
0 , there is a column vector of size 2; we write vk

0 for the vector to the left of Ak
0

and uk
0 for the vector to the right. Similarly, on each side of A there is a column vector

of size 2(n − m0 + 1), which we will denote analogously by v and u. In particular, for

0 ≤ k ≤ m0 − 2 we find due to (36) and (4.37) that A2k,2k+2 = ρ2kρ2k+1 > 0. Moreover,

the first entry of u is the nonzero value A2(m0−1),2n = ρ �= 0; this entry is the only non-

vanishing entry of A on the 2(n−m0)+ 2-th diagonal. If we consider A2, we get exactly

two non-vanishing entries on the 2(n−m0)+ 4-th diagonal, given by

A2(m0−2),2n = ρ2(m0−2)ρ2(m0−2)+1ρ

and

A2(m0−1),2(n+1) = ρρ2nρ2n+1.

Similarly, Ai will have i non-vanishing entries on the outermost 2(n − m0) + 2i-th

diagonal; in particular, Am0 will have m0 non-vanishing entries on the 2n-th diagonal

given by

Am0
0,2n = ρ0ρ1 · · · ρ2(m0−2)ρ2(m0−2)+1ρ,

Am0
2j,2(n+j) = ρ2jρ2j+1 · · · ρ2(m0−2)ρ2(m0−2)+1ρρ2nρ2n+1 · · · ρ2(n+j)ρ2(n+j)+1,

Am0
2(m0−1),2(n+m0−1) = ρρ2nρ2n+1 · · · ρ2(n+m0−2)ρ2(n+m0−2)+1

for 1 ≤ j < m0 − 1. A similar structure, but shifted, is obtained for all the matrices

bzj
(A)i.
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With this structure in mind, we can finish the proof. We first consider the entries

�(A)j,2n+j. On this diagonal, only the operators bzj
(A)±mj have non-vanishing entries

(and we can guarantee that they are non-vanishing). But all of them are at different

positions. Hence, we see that cmj,j = 0 for all 0 ≤ j ≤ m. In the next step, we consider the

diagonal �(A)j,2n−2+j and obtain analogously that cmj−1,j = 0. Inductively we see that

all coefficients vanish, and consequently � ≡ 0. �

5 Proofs of the Main Theorems

We have laid nearly all the groundwork necessary to complete the proofs of our main

theorems. Before we proceed, we recall the general strategy: in Section 3, we showed

that, in the presence of a function B = B�z having half-period character, there is a map

F : �∗×T → TMCMV(E, �z, λ∗) taking unimodular characters and a phase (α, τ) to a periodic

MCMV matrix F(α, τ) := A(α, τ) satisfying a Magic Formula. In Section 4, we defined a

map G assigning a divisor to a periodic MCMV matrix. In this section we glue these

constructions together via a third and final map, the Abel map A : D(E) → �∗ × T, and

show that together they in fact form a commuting diagram in analog to (4.4):

Once this is done, our main theorems will follow as special cases for a particular choice

of function B and vector �zE.

To properly introduce the Abel map, we briefly recall the construction from [25]

of the bijective correspondences between the isospectral torus TCMV(E), the set of Schur

functions S+(E) defined in (1.34), and the set of divisors D(E) given by (4.2).

We first set up the correspondence S+(E) � D(E). Consider a function f+ ∈ S+(E)

and let

F+(z) := 1+ zf+(z)

1− zf+(z)

denote the associated Caratheodory function. Due to (1.31), we have

1+ eitf+(eit)

1− eitf+(eit)
= 1+ f−(eit)

1− f−(eit)
for a.e. eit ∈ E.
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Strictly speaking,

F−(z) := 1+ f−(z)

1− f−(z)

is not a Caratheodory function since it does not admit the normalization F−(0) = 1;

however, it still maps D analytically into the right half-plane. Using (1.32), we see

directly that the function

F(z) := 1

2

(
F+(z)+ F−(z)

)
= 1− zf+(z)f−(z)(

1− zf+(z)
)(

1− f−(z)
)

has no zeros in the gaps of E. Hence, since t 
→ Im F(eit) is decreasing on each gap,

this function can have at most one sign change per gap, caused by a possible pole xj

(where j indexes the j-th gap). The measure ν in the integral representation of F is purely

absolutely continuous on E, and condition (1.31) implies that νac is split equally between

F+ and F−. But due to (1.32), the point mass at xj can only correspond to either F+ or

F− and not to both. We write (xj, 1) if xj is a pole of F+ and (xj,−1) if xj is a pole of F−.

Special consideration is needed for the endpoints of the gaps: by convention, we write

(λ−j , 1) if Im F ≤ 0 in the closed gap [λ−j , λ+j ] and (λ+j , 1) if Im F ≥ 0. With these choices,

the collection

D = {(xj, εj)}gj=0, εj ∈ {±1}

is the divisor in D(E) associated to f+. Conversely, one can show that any divisor D ∈
D(E) leads to a function f+ ∈ S+(E) (see [25, Theorem 1.4] for details).

The correspondence TCMV(E) � S+(E) is implicitly given in Section 3.2. The half-

line restriction C+ of an element C = C(α, τ) ∈ TCMV(E) is linked to the Schur function

f α,τ
+ given by

f α,τ
+ ◦ z = e−iτ

Kα

ζ0

Kα
ζ0

(5.2)

through the relation

1+ zf α,τ
+ (z)

1− zf α,τ
+ (z)

=
〈(

C+(α, τ)− z
)−1(C+(α, τ)+ z

)
δ0, δ0

〉
.
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In fact, the map (α, τ) 
→ f α,τ
+ sets up a bijection between �∗ × T and S+(E). This also

enables us to define the Abel map A : D(E) → �∗ × T by

A(D) := (α, τ), (5.3)

where (α, τ) is the character and phase of the function f+, which corresponds to the

divisor D. Note that (5.3) generalizes the definition of the Abel map for periodic CMV

matrices; cf. (4.4).

The first lemma of this section demonstrates that the diagram (5.1) commutes if

we replace TMCMV(E, �z, λ∗) with the image F(�∗ × T). Let D̃ be the divisor associated to

the periodic operator A(α, τ) ∈ TMCMV(E, �z, λ∗) by our construction in Section 4.2, that is,

D̃ = G(F(α, τ)).

Lemma 5.1. Let f̃+ and F̃+ be the Schur and Caratheodory functions associated to the

periodic operator A(α, τ) as in Section 4, and let f α,τ
+ and Fα,τ

+ be the functions associated

to (α, τ) by (5.2) above. Then we have

f̃+ = f α,τ
+ , F̃+ = Fα,τ

+ , and A(D̃) = (α, τ). (5.4)

Proof. By (3.44) and (3.45), we have

f α,τ
+ ◦ z = xα,τ

0

yα,τ
0

.

Therefore, the identities f̃+ = f α,τ
+ and F̃+ = Fα,τ

+ follow by comparing (4.9) with Theorem

3.11.

We have now seen that (x̃j, 1) corresponds to poles of F̃+. To see that A(D̃) = (α, τ),

we only need to show that (x̃j,−1) as defined in Section 4 corresponds to poles of the

function F̃−. Due to (4.23), we have

F̃+(z) = v(z)+√
�A(z)2 − 4

u(z)
, (5.5)

where

v(eit) ∈ R and u(eit) ∈ iR.
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Consider now the function

F̃−(z) := −v(z)−√
�A(z)2 − 4

u(z)
. (5.6)

Since
√

�A(eit)2 − 4 ∈ iR on E, we obtain that F̃+(eit) = F̃−(eit) for all eit ∈ E. Hence, if x̃j

is a zero of u and the numerator in (5.5) vanishes (i.e., εj = −1), then F̃− has a pole at x̃j.

This concludes the proof. �

Remark. Note that (5.5) and (5.6) show that the absolutely continuous parts of the

corresponding measures agree and are given by (4.25).

In order to show commutativity of (5.1), we still have to show that for a given

�z and λ∗, there is a functional model construction F that surjects onto those MCMV

matrices in TMCMV(E, �z, λ∗) having a fixed spectrum; that is, for an arbitrary �z and

A ∈ TMCMV(E, �z, λ∗), there exists a function B = ∏n−1
j=0 bζj

whose character is a half-

period such that A = A(α, τ) corresponds to the functional model associated to B and

normalization at λ∗. To show that the character of B is a half-period, the representation

of �A from Lemma 4.4 will be crucial.

Proposition 5.2. Let A ∈ TMCMV(E, �z, λ∗) be a periodic MCMV matrix with associated

discriminant �A, and set E = �−1
A ([−2, 2]). Then there exists a unique divisor D ∈ D(E)

such that

A = A(α, τ), (5.7)

where A(D) = (α, τ) and A(α, τ) is defined by (3.62) for the functional model associated

to B =∏n−1
j=0 bζj

. Moreover, the diagram (5.1) commutes.

Proof. Suppose A is periodic and let D be the associated divisor. Write (α, τ) = A(D)

for the corresponding character and phase. Due to Lemma 4.4, we have

�A ◦ z = � + 1

�
, � = BB∗.

Since the characters of B and B∗ coincide and since � is single-valued, the character of

B must be a half-period.
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Suppose now that A(α, τ) is the matrix representing multiplication by z in

the basis {yα,τ
k } for the functional model associated to B. Then, by Lemma 5.1, the

Caratheodory functions of A and A(α, τ) coincide and hence we obtain (5.7). Since it was

already shown in [25] that the Abel map is a bijection, this also proves the commutativity

of (5.1). �

We are now in position to complete the proofs of our main results stated in

the introduction. As already mentioned in the first remark of Section 3.3, the existence

of the Ahlfors function for an arbitrary finite-gap set E ensures that there always is

a function B with the property that its character is a half-period. To be specific, the

function w∞ = z(w∞ ◦ z) is an explicit choice of such a function. Our first main result,

Theorem 1.4, now simply follows as the special case of Proposition 5.2 with �z = �zE (and

B = w∞).

Proof of Theorem 1.4. For the special choice of �z = �zE, we define the map F : �∗ × T →
TMCMV(E, �zE, λ∗) in the same way as was done previously. That is,

F(α, τ) := A(α, τ),

where A(α, τ) is the matrix representation of multiplication by z in the basis {yα,τ
k } for

the functional model associated to the function B = w∞. Our considerations have shown

this F is a bijection and that concludes the proof of (1.18).

Tracing through our construction will also lead to the more explicit version

of the one-to-one correspondence between an element A ∈ TMCMV(E, �z, λ∗) and its

counterpart C ∈ TCMV(E). �

Our analysis also leads to a quick proof of the Magic Formula, our second main

result.

Proof of Theorem 1.5. Let A be an element of A(�zE). If A ∈ TMCMV(E, �zE, λ∗), then we

know from Proposition 5.2 that A = A(α, τ) for some choice of character and phase.

Hence the Magic Formula

�E(A) = S2(g+1) + S−2(g+1)

follows by Corollary 3.13 with n = g+ 1.
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Conversely, if A satisfies the Magic Formula then A must be periodic with period

2(g+ 1) due to Naiman’s Lemma (see, e.g., [32, Lemma 8.2.4]). Moreover, as

�E(A) = S2(g+1) + S−2(g+1) = �A(A),

Proposition 4.11 implies that �A = �E. In particular, we have positivity of �A in

all gaps. Since σ(A) = �−1
A ([−2, 2]), it therefore follows that σ(A) = E and thus

A ∈ TMCMV(E, �zE , λ∗). The second part of the theorem follows along the same lines as

in the proof of Theorem 1.4. �

Finally, Theorem 1.6 is immediate:

Proof of Theorem 1.6. This is a straightforward consequence of Theorems 1.4, 1.5,

and 3.11. �

A The Ahlfors Functions of Finitely Connected Denjoy Domains

We begin with an existence theorem:

Theorem A.1. Let � be a region in C and fix a point z0 ∈ �. Suppose there exist

nonconstant bounded analytic functions defined on �. Then there is a unique analytic

function wz0
: � → D, which solves the Ahlfors problem, that is,

w′
z0

(z0) = sup{|g′(z0)| : g : � → D analytic}. (A.1)

The function wz0
is called the Ahlfors function of � (and z0) and we always

have that wz0
(z0) = 0; cf. [33, Theorem 8.8.1]. These functions were first studied for

finitely connected domains by Ahlfors [1], hence the name. Existence and uniqueness

for arbitrary domains was later established by Fisher [11].

In [10], an explicit expression for the Ahlfors function of finitely connected

domains with certain symmetries was presented. Let 0 < aj < bj for 1 ≤ j ≤ g and

define

ER := R+ \
g⋃

j=1

(aj, bj), �R := C \ ER. (A.2)

Since the Ahlfors problem is conformally invariant, providing a solution for �R also

leads to a solution for all conformally equivalent domains. In particular, for any finite

systems of arcs ET on the unit circle, we can map D conformally onto C+ such that
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ET corresponds to some set ER of the form (A.2). For notational simplicity, we merely

present the results for sets of the form (A.2). To any such set, we associate the function

H(z) = 1√−z

g∏

j=1

√
z− aj

z− bj
, (A.3)

where the square root is chosen in such a way that H(z) becomes a Nevanlinna function

(i.e., maps C+ analytically into C+). The following theorem generalizes a result of

Pommerenke [26] (who dealt with the case of z0 ∈ R \ ER).

Theorem A.2. [10, Theorem 2.3] The Ahlfors function of �R and z0 is given

explicitly by

wz0
(z) = z− z0

z− z0

H(z)− H(z0)

H(z)+ H(z0)
. (A.4)

If Im z0 > 0 then wz0
has precisely g zeros, say z1, . . . , zg, in the lower half-plane C− and

together with z0, these points account for all the zeros of wz0
. Moreover,

log |wz0
(z)| = −G�R(z, z0)−

g∑

j=1

G�R(z, zj). (A.5)

Now, fix z0 ∈ C+ and consider the discriminant �ER defined by

�ER(z) := wz0
(z)wz0

(z)+ 1

wz0
(z)wz0

(z)
. (A.6)

We collect the properties of �ER in the following theorem and point out that the

conclusion for the critical points appears to be new.

Theorem A.3. �ER is a real rational function, that is, �ER(z) = �ER(z). Its poles

are given by z0, z0, . . . , zg, zg, where z1, . . . , zg are the zeros of wz0
in C−. Moreover,

ER = �−1
ER

(
[−2, 2]

)
(A.7)

and �ER has exactly one critical point, say c2j, in the j-th gap (aj, bj) with �ER(c2j) > 2

and exactly one critical point, say c2j+1, in the j-th band (bj, aj+1) with �ER(c2j+1) = −2.

Proof. Since H(z) = H(z), we see that wz0
(z) = wz0

(z). Also, for z ∈ ER, one has

lim
ε→0

�ER(z+ iε) = lim
ε→0

�ER(z− iε).

Hence �ER is a real rational function on C. Note that in (A.6) we have written �ER as the

composition of wz0
wz0

and the Joukowsky map u 
→ u + 1/u. Since |wz0
(z)| = 1 if and

only if z ∈ ER, this proves (A.7). Moreover, since H is a Nevanlinna function, it decreases
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monotonically from i∞ to 0 as z moves along a band [bj, aj+1]. Setting H(z0) = H0, it

follows from the previous theorem that

wz0
(z)wz0

(z) = H(z)− H0

H(z)+ H0

H(z)− H0

H(z)+ H0
.

Recall now that z−H0
z+H0

is the Blaschke factor of the right half-plane. Therefore, as H(z)

decreases from i∞ to 0, the values of wz0
wz0

run through ∂D precisely once, starting and

ending at 1. Hence there is exactly one point c2j+1 ∈ (bj, aj+1) with wz0
(c2j+1)wz0

(c2j+1) =
−1, that is, �ER(c2j+1) = −2. To analyze the behavior in the gaps, we note that in each

gap H(z) increases monotonically from 0 to ∞. Considering the function

ψ(x) = x − H0

x + H0

x − H0

x + H0

on R+ shows that there is exactly one critical point in each gap. �

B Operator Möbius Transforms

Let H be a Hilbert space and denote by L(H) the space of bounded linear operators from

H into itself equipped with the standard operator norm. By D(H) (resp. D(H)) we denote

the open (resp. closed) unit ball in L(H), that is, D(H) is the set of contractions on H. We

will write operators U ∈ L(H⊕H) in matrix form:

U =
[

U11 U12

U21 U22

]
, Uij ∈ L(H). (B.1)

To such matrices we can associate a linear fractional transformation

�U(S) := (SU12 + U22)−1(SU11 + U21), (B.2)

defined for those S ∈ L(H) for which SU12 + U22 is boundedly invertible. It is

straightforward to see that �U(�V(S)) = �VU(S) and that for any λ �= 0, the operators U

and λU generate the same transform.

In [17], a complete characterization of the class of operators U such that �U is a

bijection from D(H) onto D(H) was given. In this case, �U is called an operator Möbius

transform. The characterization involves the special operator

j =
[

1 0

0 −1

]
,

where as usual 1 denotes the identity operator on H. An operator U ∈ L(H⊕H) is called

j-unitary if U∗jU = j.
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Theorem B.1. [17] �U is an operator Möbius transform if and only if U is

colinear with a j-unitary operator.

A complete description of all j-unitary operators (and hence all operator Möbius

transforms) is known:

Theorem B.2. [17] The general form of a j-unitary operator is

U =
[

1 A∗

A 1

][
η−1

A∗ 0

0 η−1
A

][
V1 0

0 V2

]
, (B.3)

where A ∈ D(H), ηA = √
1− AA∗, and V1, V2 are unitary operators on H.

In what follows we will derive an expression for the inverse of the operator

Möbius transform corresponding to a contraction A ∈ D(H). Let

UA =
[

1 A∗

A 1

][
η−1

A∗ 0

0 η−1
A

]
and ŨA =

[
η−1

A∗ 0

0 η−1
A

][
1 −A∗

−A 1

]
.

Then

ŨAUA =
[

1 0

0 1

]

and it follows that �ŨA

(
�UA

(S)
) = S. Moreover, noticing that for n ∈ N we have (η2

A)nA =
A(η2

A∗)n and then applying the functional calculus, it follows that for every function f

that is continuous on R>0, we have f (η2
A)A = Af (η2

A∗). Hence, in particular, η−1
A A = Aη−1

A∗

and η−1
A∗ A∗ = A∗η−1

A . This commutativity relation yields

ŨA =
[

1 −A∗

−A 1

][
η−1

A∗ 0

0 η−1
A

]

which corresponds to the fractional linear transform

�ŨA
(S) = ηA(1− SA∗)−1(S − A)η−1

A∗ . (B.4)

Thus we see that ŨA = U−A, in analog to the scalar case.
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STAHL–TOTIK REGULARITY FOR CONTINUUM SCHRÖDINGER
OPERATORS

BENJAMIN EICHINGER AND MILIVOJE LUKIĆ

Abstract. We develop a theory of regularity for continuum Schrödinger operators based on the
Martin compactification of the complement of the essential spectrum. This theory is inspired by
Stahl–Totik regularity for orthogonal polynomials, but requires a different approach, since Stahl–
Totik regularity is formulated in terms of the potential theoretic Green function with a pole at∞,
logarithmic capacity, and the equilibrium measure, notions which do not extend to unbounded
spectra. For any half-line Schrödinger operator with a bounded potential (in a locally L1 sense),
we prove that its essential spectrum obeys the Akhiezer–Levin condition, and moreover, that
the Martin function at ∞ obeys the two-term asymptotic expansion

√−z + a
2
√−z

+ o( 1√−z
)

as z → −∞. The constant a in that expansion has not appeared in the literature before; we
show that it can be used to measure the size of the spectrum in a potential theoretic sense and
that it should be thought of as a renormalized Robin constant suited for semibounded sets. We
prove that it enters a universal inequality a ≤ lim infx→∞ 1

x

∫ x

0 V (t)dt, which leads to a notion
of regularity, with connections to the root asymptotics of Dirichlet solutions and zero counting
measures. We also present applications to decaying and ergodic potentials.

1. Introduction

The goal of this paper is to develop a theory of Stahl–Totik regularity suitable for continuum
Schrödinger operators; it is natural for this topic to work in the half-line setting, so our Schrödinger
operators are unbounded self-adjoint operators on L2((0,∞)), corresponding formally to

LV = − d2

dx2 + V.

The potential V will always be real-valued and assumed to be uniformly locally integrable, i.e.

sup
x≥0

∫ x+1

x

|V (t)|dt <∞ (1.1)

(in particular, 0 is a regular endpoint and +∞ is a limit point endpoint in the sense of Weyl). We
set the Dirichlet boundary condition at 0, so the domain of the operator is

D(LV ) = {f ∈ L2((0,∞)) | f ∈W 2,1
loc ([0,∞)),−f ′′ + V f ∈ L2((0,∞)), f(0) = 0}

where W 2,1
loc ([0,∞)) denotes the set of functions such that f ∈ W 2,1([0, x]) for all x < ∞, i.e.,

f ′′ ∈ L1([0, x]) for all x <∞.
The connection of orthogonal polynomials and potential theory goes back at least to the work of

Faber and Szegő [33, 70]. For further references on the subject we refer to the paper of Simon [65]
and the monograph of Stahl and Totik [69]. Building on important work of Ullman [71], Stahl and
Totik developed a comprehensive theory for orthogonal polynomials for arbitrary measures with

B.E. was supported by Austrian Science Fund FWF, project no: J 4138-N32 and project no: P 33885.
M.L. was supported in part by NSF grant DMS–1700179.
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compact support in C. It is shown that the asymptotic behavior of the orthogonal polynomials is
intimately related with so-called Stahl–Totik regularity of the measure. Regularity of the measure
is then used as a reference behavior in the description of many phenomena; in spectral theory, it
has important consequences through the special cases of measures supported on the real line or
unit circle. For instance, on the real line, the theory provides a universal inequality between the
Jacobi coefficients of a compactly supported measure and the logarithmic capacity of its topological
support E, and the measure is defined to be Stahl–Totik regular if equality holds. The corresponding
Jacobi matrix is then also said to be regular. This motivates the search for a similar theory for
Schrödinger operators, as discussed in [65, Section 9]. However, Stahl–Totik regularity is built on
potential theoretic notions, such as Green functions on the domain Ω = Ĉ \ E with the pole at
∞, logarithmic capacity, and equilibrium measures – objects which are undefined for unbounded
sets E, and therefore not applicable to continuum Schrödinger operators. For this reason, even the
correct objects and extremal principles were not identified until now.

In this paper, we develop the corresponding theory for Schrödinger operators. Martin functions
[3, 54] serve as the counterpart of Green functions, corresponding to boundary points z0 ∈ ∂Ω
instead of internal points z0 ∈ Ω; but whereas the Green function is defined with an explicit
logarithmic singularity at z0, the existence and behavior of Martin functions is more varied. If
E ⊂ R is a closed unbounded set, ∞ is a boundary point of the Denjoy domain Ω = C \ E. If this
domain is Greenian, associated to the boundary point ∞ is a cone of dimension 1 or 2 of positive
harmonic functions in Ω which are bounded on bounded sets and vanish at every Dirichlet-regular
point of E. The cone is spanned by the minimal Martin functions at ∞ [1, 2, 7, 35]. Moreover, if
inf E > −∞, the cone is of dimension 1, and the Martin function at ∞ is determined uniquely up
to normalization; we denote it by ME and simply call it the Martin function from now on.

The Akhiezer–Levin condition for semibounded sets (sets with inf E > −∞) is

lim
z→−∞

ME(z)√−z > 0 (1.2)

(by general principles, the limit exists with a value in [0,∞)). This is the semibounded version of
a condition originally considered by Akhiezer–Levin [1] for arbitrary E ⊂ R; see also [73, Remark
1.13]. For sets obeying (1.2), we will normalize the Martin function so that the limit in (1.2) is
equal to 1.

For a potential bounded in the sense (1.1), the spectrum σ(LV ) is a closed subset of R bounded
below but not above, so the above definitions are applicable. It will be noted that isolated points
of the set don’t affect the Martin function, so we can equally well use E = σess(LV ) in what follows
(more generally, ME1 = ME2 if the symmetric difference of E1 and E2 is a polar set).

In spectral theory, Martin functions first appear implicitly, in the classical work of Marchenko–
Ostrovski [55] classifying the spectra of periodic Schrödinger operators. In this work, the discrimi-
nant of a 1-periodic operator is expressed in the form ∆(z) = 2 cos(Θ(z)), and it can be recognized
that ImΘ(z) is the Martin function at ∞ for the periodic spectrum. The explicit use of Martin
functions in spectral theory starts with works of Yuditskii and coauthors [27, 30, 68], through in-
verse spectral theoretic studies associated to Dirichlet-regular spectra obeying a Widom condition
and finite gap length conditions.

In contrast to the previous works, our first theorem is a set of universal properties of the spectra
of Schrödinger operators obeying (1.1); note that a boundedness condition such as (1.1) is essential
for the following theory, since potentials going to −∞ or +∞ can give spectrum equal to R or
spectrum which is a polar set.
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Theorem 1.1. For any potential V obeying (1.1) and E = σess(LV ), the domain Ω = C \ E is
Greenian, ∞ is a Dirichlet-regular point for Ω, Ω obeys the Akhiezer–Levin condition, and there
exists aE ∈ R such that the Martin function has the asymptotic behavior

ME(z) = Re
(√
−z + aE

2
√−z

)
+ o

(
1√
|z|

)
, (1.3)

as z →∞, arg z ∈ [δ, 2π − δ], for any δ > 0.

Each of the conclusions of this theorem is strictly stronger than the previous; we will point
out examples in Section 2. In particular, the second term of the expansion (1.3) is not an au-
tomatic property of Akhiezer–Levin sets, but rather an added feature corresponding to spectra of
Schrödinger operators. It should be emphasized that spectra of Schrödinger operators with bounded
potentials can be very thin in the sense that they can even have zero Hausdorff dimension [17] and
zero lower box counting dimension [18], while our result is a universal “thickness” result in the
perspective of the Martin function.

In the references given above, the Martin function was used in spectral theory as a positive
harmonic function in Ω that vanishes on the boundary. In fact, Martin theory provides a whole
kernel M(z, x) on Ω × (Ω̂ \ {z∗}), where Ω̂ denotes the Martin compactification of Ω and z∗ ∈ Ω
is a normalization point. If ∂M1 Ω denotes the so-called minimal Martin boundary of Ω, then for
every positive harmonic function h on Ω there exisists a unique finite measure ν such that

h(z) =
∫

∂M1 Ω

M(z, x)dν(x).

We will provide more details and precise definitions in Section 2. It is new to combine this theory
with the spectral theory of unbounded self-adjoint operators and this was crucial for the proof of
Theorem 1.1.

It is crucial that Theorem 1.1 associates to the essential spectrum E the real-valued constant aE,
which will serve as a substitute for the Robin constant from potential theory. Expansions of the
form (1.3) have previously appeared in the spectral theory literature [55] only under strong a priori
assumptions on the spectrum. Namely, the set E is closed so it can be written in the form

E = [b0,∞) \
N⋃

j=1
(aj , bj) (1.4)

where j indexes the “gaps”, i.e., connected components of [b0,∞) \ E, and N is finite or ∞. If∑
j(bj − aj) < ∞, the Martin function has an expansion (1.3) with aE = b0 +

∑
j(aj + bj − 2cj),

where cj denotes the (unique) location of the maximum of the restriction of ME to the interval
[aj , bj ] (see Lemma 6.2) by harmonic/complex theoretic arguments. Instead, our Theorem 1.1
applies even when the spectrum E is very thin and this is not a purely complex theoretic result; its
proof is a combination of spectral theoretic arguments and the theory of the Martin boundary of
Denjoy domains.

The renormalized Robin constant aE obeys a decreasing property on the spectra of Schrödinger
operators, so it should be interpreted as an inverse measure of the size of E. For instance, our next
result is a universal inequality involving aE, which should be seen as a lower bound on the size of
the essential spectrum:
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Theorem 1.2. If V is a potential obeying (1.1) and E = σess(LV ), then

aE ≤ lim inf
x→∞

1
x

∫ x

0
V (t)dt. (1.5)

The perspective on aE as an inverse measure of the size of E will be most explicitly illustrated
later, in the proof of Theorem 1.12, which will use the argument that if E ⊂ [0,∞) and aE ≤ a[0,∞),
then E = [0,∞). This kind of argument wasn’t available before in this generality, because there
was no known quantity with the correct properties: any quantity based on Lebesgue measure or
dimension would sometimes give infinite or trivial values.

For any z ∈ C, the Dirichlet eigensolution is the solution of the initial value problem
−∂2

xu(x, z) + V (x)u(x, z) = zu(x, z), u(0, z) = 0, (∂xu)(0, z) = 1.
Our next result is that the Martin function provides a universal lower bound on the growth rate of
the Dirichlet solution.

Theorem 1.3. If V is a potential obeying (1.1) and E = σess(LV ), then

ME(z) ≤ lim inf
x→∞

1
x

log|u(x, z)|, ∀z ∈ C \ [min E,∞).

Exclusion of [min E,∞) in Theorem 1.3 is necessary because for z ∈ (min E,∞), by Sturm
oscillation theory [64], the Dirichlet solution has infinitely many zeros.

Definition 1.4. The potential V is regular if

aE = lim
x→∞

1
x

∫ x

0
V (t)dt. (1.6)

Of course, due to (1.5), this is equivalent to requiring

aE ≥ lim sup
x→∞

1
x

∫ x

0
V (t)dt.

In our next theorem, we will characterize regularity in terms of root asymptotics for the Dirichlet
eigensolutions. We say that a property holds a.e. on E with respect to harmonic measure if it holds
away from a set A ⊂ E such that ωE(A, z0) = 0, where ωE(·, z0) denotes the harmonic measure of Ω
evaluated at some z0 ∈ Ω. This condition is independent of the choice of z0 ∈ Ω since the harmonic
measures are mutually absolutely continuous.

Theorem 1.5. If V is a potential obeying (1.1) and E = σess(LV ), the following are equivalent:
(i) V is regular;
(ii) For every Dirichlet-regular z ∈ E, lim supx→∞ 1

x log|u(x, z)| ≤ 0;
(iii) For a.e. z ∈ E with respect to harmonic measure,

lim sup
x→∞

1
x

log|u(x, z)| ≤ 0;

(iv) There exists z ∈ C+ such that lim supx→∞ 1
x log|u(x, z)| ≤ME(z);

(v) For all z ∈ C, lim supx→∞ 1
x log|u(x, z)| ≤ME(z);

(vi) limx→∞ 1
x log|u(x, z)| = ME(z) uniformly on compact subsets of C \ [min E,∞).

Since (v) or (vi) trivially imply (iv), (iv) is of interest as a criterion for establishing regularity
of V , whereas (v), (vi) are of interest as consequences of regularity. Similarly, (ii) implies (iii), so
(ii) is of interest as a consequence of regularity and (iii) as a condition for regularity. Instead of



STAHL–TOTIK REGULARITY FOR CONTINUUM SCHRÖDINGER OPERATORS 5

conditions (ii) and (iii), it would be customary to state the single condition that the inequality holds
quasi-everywhere; this is between our conditions since the set of Dirichlet-irregular points is polar
and polar sets have harmonic measure 0. The benefit of (ii) is that it can be used pointwise (in
particular, for a Dirichlet-regular set E, the inequality holds everywhere on E). More importantly,
the benefit of (iii) is that the characterization in terms of harmonic measure will be essential for
our proof of Theorem 1.8 below.

There are no previous results on Stahl–Totik regularity for continuum Schrödinger operators,
even in special cases. This topic was previously considered by Simon [65, Section 9], who formulated
several conjectures. The first is that for semibounded spectra that are “close” to [0,∞) (e.g.
[0,∞) \ E of finite Lebesgue measure) there should be a version of equilibrium measure νE and
equilibrium potential ΦE, characterized by several properties including a normalization ΦE(z) ∼
Re(
√−z)(1 + o(1)) as z → −∞. It was suggested that regularity for continuum Schrödinger

operators can be defined by the condition lim supx→∞ 1
x log|u(x, z)| = ΦE(z), and that this would

have equivalent characterizations similar to the orthogonal polynomial case. Our work does not use
a finite Lebesgue measure assumption for [0,∞) \ E, so it solves these conjectures in a far greater
generality than they were even previously conjectured. Moreover, our work provides the correct
potential theoretic interpretation for the function ΦE (now understood as the Martin function ME),
and that interpretation is crucial in the proofs.

Simon also conjectured that the asymptotics ΦE(z) = Re(
√−z)(1 + o(1)) should improve to the

asymptotic behavior Re
√−z + o(1); this is motivated by the asymptotic behavior

√−z + o(1) of
m-functions, proved by Atkinson [4]. While that asymptotic statement for individual m-functions
cannot be improved for locally integrable potentials, we discover that due to averaging effects, the
asymptotic behavior of our quantities improves even more, to the form (1.3). This discovery of
(1.3) has enabled us to introduce the constant aE, which was not previously conjectured, and to
use it for the robust general definition of regularity given above.

We also define the correct “equilibrium measure” which will be related to a deterministic density
of states. The Martin function can be extended to a subharmonic function on C, so it has a Riesz
measure, given by

ρE = 1
2π∆ME,

which we will call the Martin measure of the set E. Conversely, the Martin function has a Hadamard
representation of the form

ME(z) = ME(z∗) +
∫

E
log
∣∣∣∣1−

z − z∗
t− z∗

∣∣∣∣dρE(t)

where z∗ < min E is an arbitrary normalization point. The Martin measure will serve the same role
in this theory that the logarithmic equilibrium measure serves for orthogonal polynomials. However,
ρE is not defined with respect to any extremal property (and it is not even a finite measure), so
different proofs will be needed in the current setting.

For any x > 0, let ρx denote the zero counting measure for u(x, z) divided by x,

ρx = 1
x

∑

z:u(x,z)=0

δz. (1.7)

Note that ρx is the Riesz measure of 1
x log|u(x, z)|. The limit of ρx as x → ∞, when it exists, is

interpreted as a deterministic density of states associated to V . The convergence of measures will
be understood in the weak-∗ sense, i.e., when integrated against continuous functions with compact
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support. The Martin measure and the zero counting measures are related by the following pair of
results:

Theorem 1.6. Assume V is regular. Then ρx converges to ρE as x→∞, in the weak-∗ sense.
The following is a continuum analog of a result of Stahl–Totik [69]:

Theorem 1.7. Assume that V obeys (1.1) and let µ be a maximal spectral measure for LV . Suppose
that ρx converges to ρE as x→∞ in the weak-∗ sense. Then, either V is regular, or there exists a
polar Borel set X such that µ(R \X) = 0.

Of course, the statement µ(R \X) = 0 can be restated in the language of the Borel functional
calculus as χR\X(LV ) = 0.

So far, we have seen that regularity of V can be established from the root asymptotics of Dirichlet
solutions. The next theorem shows that it can be established from spectral properties of the
operator. It is the continuum counterpart of a theorem of Widom [76].

Theorem 1.8. Let µ be a maximal spectral measure for LV . If ωE(·, z0) for some z0 ∈ C \ E is
absolutely continuous with respect to µ, then V is regular.

This theory leads to several new results even for the special case of half-line essential spectrum
[0,∞); we present those as our first applications. If V is a decaying potential in the sense

lim
x→∞

∫ x+1

x

|V (t)|dt = 0 (1.8)

then E = σess(LV ) = [0,∞) by Blumenthal–Weyl [9, 75]. It follows that ME(z) = Re
√−z. In

particular, aE = 0, so immediately from the definition:

Corollary 1.9. If V is a decaying potential in the sense (1.8), then V is regular with σess(LV ) =
[0,∞).

Since harmonic measure for E = [0,∞) is mutually absolutely continuous with χ(0,∞)(x)dx, the
following is an immediate consequence of Theorem 1.8:

Corollary 1.10. Assume that V obeys (1.1) and denote by µ a maximal spectral measure for LV .
Denote by dµ = fdx+dµs the Radon–Nikodym decomposition of µ with respect to Lebesgue measure.
If σess(LV ) = [0,∞) and f(x) > 0 for Lebesgue-a.e. x > 0, then V is regular.

More generally, a version of Corollary 1.10 holds, whenever the harmonic measure for the domain
C\E is absolutely continuous with respect to the Lebesgue measure χE(x)dx. In particular, it holds
for finite gap sets (i.e., when N is finite in (1.4)) and regular Parreau-Widom sets. If E is Dirichlet-
regular, the Green function GE(z, z0), for z0 < min E, has exactly one critical point cj ∈ (aj , bj) in
each gap. If, in addition, the critical values of GE(z, z0) are summable, i.e.,

∞∑

j=1
GE(cj , z0) <∞,

we call E a regular Parreau-Widom set. In fact, the harmonic measure for the domain C \ E is
absolutely continuous with respect to the Lebesgue measure if and only if E satisfies a certain
sector condition [32, Theorem 4]. We will describe this generalization in Section 6.

Sparse potentials are not covered by Corollary 1.9 or Corollary 1.10, but nonetheless provide
additional examples of regular potentials:
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Example 1.11. Let W ∈ L1((0,∞)) be compactly supported, W ≥ 0, let xn ≥ 0 be an increasing
sequence such that xn+1− xn →∞ as n→∞ and V (x) =

∑
nW (x− xn). Then V is regular with

σess(LV ) = [0,∞).
The sparse potentials from Example 1.11 are not decaying in the sense (1.8), so Corollary 1.9 does

not have a converse; sparse potentials have purely singular spectrum by [46, 60], so Corollary 1.10
does not have a converse.

However, we prove that Corollary 1.9 has the following partial converse; we have already described
Theorem 1.1 as a universal thickness result about the spectrum, and the following result similarly
guarantees presence of essential spectrum.
Theorem 1.12. Assume that V obeys (1.1) and that σess(LV ) ⊂ [0,∞). Then:
(a) lim infx→∞ 1

x

∫ x
0 V (t)dt ≥ 0;

(b) If lim infx→∞ 1
x

∫ x
0 V (t)dt ≤ 0, then σess(LV ) = [0,∞);

(c) If lim supx→∞ 1
x

∫ x
0 V (t)dt ≤ 0, then σess(LV ) = [0,∞) and V is regular.

Part (a) can also be established by other means, but we include it for completeness. Parts (b)
and (c) generalize known results giving sufficient conditions for σess(LV ) = [0,∞). In particular,
Damanik–Remling [25, Theorem 1.2] showed that σess(L±V ) ⊂ [0,∞) implies σess(LV ) = [0,∞).
Part (b) of our theorem is a strict generalization of that result; strict because it applies, e.g.,
to the sparse potentials of Example 1.11 where [25] does not (for a positive sparse potential V ,
min σess(L−V ) < 0), and a generalization because σess(L−V ) ⊂ [0,∞) implies lim supx→∞ 1

x

∫ x
0 V (t)dt ≤

0 (by (a) applied to −V ), so our parts (b), (c) also apply to the potentials in [25]. In particular,
σess(L±V ) ⊂ [0,∞) implies that V is regular and σess(LV ) = [0,∞).

In the theory of Jacobi matrices, a result of Simon [67] shows that a regular Jacobi matrix with
essential spectrum [−2, 2] obeys a Cesàro–Nevai condition. The analog for Schrödinger operators
is false – the continuum setting allows rapid oscillations which can break any Cesàro-type decay in
an L1 sense:
Example 1.13. The potential defined piecewise by V (x) = (−1)b2n(x−n)c on x ∈ [n − 1, n) for
integer n is regular with σess(LV ) = [0,∞), but 1

x

∫ x
0 |V (t)|dt 6→ 0 as x→∞.

All objects considered above are deterministic (defined only in terms of a single half-line potential
V ), but for ergodic families of Schrödinger operators, they can be recognized almost surely as
ergodic notions such as the Lyapunov exponent and the ergodic density of states, so our results can
be interpreted in the ergodic setting. In the ergodic setting, it is natural to work with whole line
potentials: let us consider a family (Vη)η∈S of real-valued potentials on R on a probability space
S which is metrically transitive with respect to a group of measure preserving transformations τy
such that Vτyη(x) = Vη(x−y) and such that any measurable subset A of S which is invariant under
all τy has probability 0 or 1. The group of transformations can be continuous (indexed by y ∈ R) or
discrete (indexed by y ∈ `Z for some ` > 0); the former case includes almost periodic Schrödinger
operators and the latter case includes many Anderson-type models studied in the literature [26, 42],
including those with a periodic background. We also assume that Vη almost surely obeys

sup
x∈R

∫ x+1

x

|Vη(t)|dt <∞; (1.9)

in fact, much of the literature on ergodic Schrödinger operators is focused on bounded potentials.
Let us denote by HVη the self-adjoint operators on L2(R) given by

D(HVη ) = {f ∈ L2(R) | f ∈W 2,1
loc (R),−f ′′ + Vηf ∈ L2(R)}
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and recall the basic properties of this ergodic family (see textbooks [11, 15, 57] and a paper of
Kirsch [42] addressing some nuances for locally L1 ergodic potentials with a discrete group of
transformations). There is an almost sure spectrum E ⊂ R,

E = σ(HVη ) = σess(HVη ), for a.e. η ∈ S,
and the potentials Vη have an almost sure Birkhoff average E(V ) ∈ R,

E(V ) = lim
x→∞

1
x

∫ x

0
Vη(t)dt, for a.e. η ∈ S.

If LVη denotes the half-line operator corresponding to the restriction of Vη to [0,∞), then E =
σess(LVη ) almost surely, so as a direct consequence of our deterministic results, E corresponds to a
Martin function with an expansion (1.3), and

aE ≤ E(V ). (1.10)
This inequality is new; several cases of the equality aE = E(V ) are well known and among the most
studied classes of ergodic Schrödinger operators (periodic, reflectionless almost periodic with finite
gap length), and we can now interpret this through the fact that the corresponding potentials are
regular.

In the ergodic setting, two central objects is the Lyapunov exponent γ(z) and the density of
states dρ; both are almost sure ergodic averages of important spectral quantities. The transfer
matrix Tη(x, z) is the 2× 2-matrix valued solution of the initial value problem

(∂xTη)(x, z) =
(

0 Vη(x)− z
1 0

)
Tη(x, z), Tη(0, z) = I,

and the corresponding Dirichlet solution is uη(x, z) = (Tη)2,1(x, z). If ρη,x denotes the measure
corresponding to uη as in (1.7), then

γ(z) = lim
x→+∞

1
x

log‖Tη(x, z)‖, for a.e. η ∈ S, (1.11)

and
dρ = w-lim

x→+∞
dρη,x, for a.e. η ∈ S.

Thus Theorem 1.5, specialized to the ergodic setting, immediately gives the following:

Corollary 1.14. For any ergodic family of Schrödinger operators obeying (1.9), the following are
equivalent:
(i) aE = E(V );
(ii) For every Dirichlet-regular z ∈ E, γ(z) = 0;
(iii) For almost every z ∈ E with respect to harmonic measure, γ(z) = 0;
(iv) For all z ∈ C+, γ(z) ≤ME(z);
(v) For all z ∈ C \ E, γ(z) ≤ME(z);
(vi) γ(z) = ME(z) for all z ∈ C \ [min E,∞).

We say that a family of ergodic Schrödinger operators is regular if one (and therefore all) of
the statements of Corollary 1.14 holds. Although this notion is new, let us point out that it
contains several of the most well studied families of almost periodic Schrödinger operators known
to have zero Lyapunov exponent on the spectrum, such as quasiperiodic operators at small coupling
[19, 21, 22, 23, 31] and limit-periodic potentials superexponentially well approximated by periodic
operators [13, 34, 58, 59]. In fact, the question of when the Lyapunov exponent is zero or positive
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on E is one of the basic questions for an almost periodic family of operators and an important
dichotomy in their study; this is especially well studied in the setting of discrete Schrödinger
operators, see e.g. [5, 16, 40]. In inverse spectral theory one considers reflectionless Schrödinger
operators on Dirichlet-regular Widom spectra with the DCT property and associated solutions of
the KdV equation [8, 20, 28, 29, 30, 37, 68]; those operators have zero Lyapunov exponent on the
spectrum so they are regular in the sense of this paper.

For a 1-periodic potential V , it is well known that the discriminant has an asymptotic expansion
at∞ whose coefficients are equal to averages of differential polynomials in V (under the appropriate
regularity assumptions on V ). The first of those equalities, rewritten for the Martin function, give
the equality aE =

∫ 1
0 V (x)dx. This can now be interpreted through the fact that periodic potentials

are regular.
For an almost periodic potential V , Johnson–Moser [41] introduced the spatial average of m-

functions, whose real part is the Lyapunov exponent γ. Their construction relies heavily on almost
periodicity through compactness of the hull, so their methods would not extend to our setting; [41]
noted as a consequence of their results, the spectrum of any almost periodic Schrödinger operator
is not a polar set (i.e. Ω is Greenian), but further consequences of Theorem 1.1 were not previously
known even in the almost periodic case.

The next theorem is a specialization of Theorems 1.6, 1.7 to the ergodic setting:

Theorem 1.15. Let (Vη)η∈S be an ergodic family of Schrödinger operators obeying (1.9). If this
ergodic family is regular, then its density of states ρ is equal to the Martin measure ρE. Conversely,
if ρ = ρE, then either the ergodic family is regular, or for a.e. η, the maximal spectral measure µη
is supported on a polar set.

Although positive Lyapunov exponents don’t always correspond to localization, we can now prove
that they always correspond to very thin spectral type. This is the analog of a Jacobi matrix result
which has been described as the ultimate Pastur–Ishii theorem.

Theorem 1.16. Let γ denote the Lyapunov exponent associated to the ergodic family (Vη)η∈S and
let µη denote a maximal spectral measure for HVη . Let Q ⊂ R be the Borel set of λ ∈ R with
γ(λ) > 0. Then for a.e. η ∈ S, there exists a polar set Xη such that µη(Q \Xη) = 0. In particular,
the measure χQdµη is of local Hausdorff dimension zero.

It is known in great generality [26] that one-dimensional random Schrödinger operators give
rise to positive Lyapunov exponent throughout the spectrum. In particular, random Schrödinger
operators provide examples of non-regular operators.

Throughout this paper, we follow the dominant literature by working with locally integrable
potentials; we expect that the theory presented here can be extended to potentials which are in the
negative Sobolev space H−1([0, x]) for x <∞, with an appropriate uniform bound replacing (1.1),
and that it can be adapted to certain other classes of one-dimensional differential operators.

We expect that the notion of regularity introduced in this paper will pave the way to new kinds
of results on Schrödinger operators which were previously beyond reach. For instance, regularity of
measures is used as the standard reference behavior in the study of the local distribution of zeros of
orthogonal polynomials, through so-called clock behavior and universality [51, 56, 66]; we conjecture
that similar results hold for regular Schrödinger operators. Without regularity, the only currently
available Schrödinger result is inevitably more limited in scope to certain perturbations of periodic
Schrödinger operators [53]. Likewise, logarithmic capacity is used to formulate the generalization of
the Shohat–Nevai theorem to measures whose essential supports are regular Parreau–Widom sets
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[12]; the Schrödinger counterpart of this result couldn’t even be formulated without the renormalized
Robin constant aE. We expect the theory in this paper to be an integral part of its eventual
proof, and of the broader program of investigating sum rules for Schrödinger operators with regular
Parreau–Widom essential spectra.

2. The Martin function and Akhiezer–Levin sets

In this section we consider in more detail the general Martin theory for Denjoy domains Ω = C\E
with min E = b0 > −∞. Clearly, we have in mind the application that E is the essential spectrum
of some continuum Schrödinger operator, LV , where V satisfies (1.1).

Recall that the capacity of a Borel set A is defined by
Cap(A) = sup{Cap(K) : K compact, K ⊂ A}

and we call a Borel set, A, polar, if Cap(A) = 0. Moreover, a property holds quasi-everywhere
on a set B, if there exists a polar set A such that the property holds on B \ A. We start with a
discussion of the Green function GE(z, z0), z0 ∈ Ω. For standard references on potential theory see
[3, 36, 62]. If z0 ∈ R, then GE(z, z0) is symmetric, that is, GE(z, z0) = GE(z, z0). Let us fix z0 < b0.
Then there exists a comb domain

Πz0 = {x+ iy : 0 < x < π, y > s(x)}, (2.1)
where s is a positive upper semicontinuous function, bounded from above, and vanishes Lebesgue-
a.e., and a conformal mapping θz0 : C+ → Πz0 such that

GE(z, z0) = Im θz0(z), z ∈ C+. (2.2)
(such a representation was proved in [32] in the case that E is compact and z0 = ∞; by a simple
transformation λ = 1

z0−z this yields a corresponding representation for the current setting). Note
that θz0(b0) = i lim supu→0 s(u) and θz0(∞) = i lim supu→π s(u). Moreover, harmonic measure
ωE(·, z0) corresponds to the pullback of the normalized (by π) Lebesgue measure on the base of the
comb. The mapping can be extended by symmetry to C \ [b0,∞) such that (2.2) still holds there.
In fact, any such function s leads to a Green function of a certain domain.

The Martin kernel normalized at z∗ < b0 is defined on Ω × (Ω \ {z∗}) by

ME(z, z0) = GE(z, z0)
GE(z∗, z0) . (2.3)

The Martin compactification Ω̂ is the smallest metric compactification of Ω such that ME(z, ·) can
be continuously extended to the boundary ∂MΩ = Ω̂\Ω for each z. We will also writeME(z, z0) for
the extended function. Note that by the Harnack principle the family {ME(z, z0)} is precompact in
the space of positive harmonic functions equipped with uniform convergence on compacts. We call
a positive harmonic function, M , minimal if any harmonic function, h, which satisfies 0 ≤ h ≤M ,
is a multiple of M , i.e., h = cM , c ≥ 0. Finally, let ∂M1 Ω ⊂ ∂MΩ denote the subset of the Martin
boundary, which consists of minimal harmonic functions. In this case, for every positive harmonic
function h, there exists a unique finite measure ν such that

h(z) =
∫

∂M1 Ω

ME(z, x)dν(x), h(z∗) = ν(∂M1 Ω). (2.4)

In general ∂M1 Ω can be quite abstract, but the situation is rather intuitive for Denjoy domains.
In [35, Theorem 6] it is shown that there exists a map π : ∂M1 Ω → E ∪ {∞} such that for every
x ∈ E∪{∞}, #π−1({x}) is either one or two, depending on how “thin” R∩Ω is at x. To state this
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precisely we need some definitions. If A is a subset of the Martin boundary ∂MΩ = Ω̂ \ Ω, then
we say a property, P , holds near A if there is a Martin-neighborhood A ⊂ W such that P holds
on W ∩Ω. Then, for A ⊂ Ω̂ and a positive superharmonic function h on Ω we define the reduced
function

RAh (x) = inf{u(x) : u ≥ 0 is superharmonic, h ≤ u on A ∩Ω and h ≤ u near A ∩ ∂MΩ} (2.5)

and R̂Ah denotes its lower semicontinuous regularization. A set A ⊂ Ω is said to be minimally thin
at y ∈ ∂M1 Ω if

R̂AME(·,y) 6= ME(·, y).

Then #π−1({x}) = 2 if and only if there is y ∈ π−1({x}) such that Ω ∩ R is minimally thin at y.
Informally, if E is sufficiently “dense” at x, then Ω locally splits into the two half spaces C+ and
C− and we obtain a Martin function for each of them.

A reformulation of the above statement can be given in the following way. For x ∈ E, let PE(x)
denote the set of positive harmonic functions that are bounded outside every neighborhood of x
and vanish quasi-everywhere on E. As in the proof of [38, Lemma 2.9] one can see, that PE(x) is
spanned by the Martin functions related to x. Hence, the above question is whether PE(x) is one-
or two-dimensional. We will provide a simplified proof for the case that there is only one Martin
function associated to x below. This question has attracted much interest and several conditions
have been obtained, [2, 7, 43, 50]. To note two extreme cases, if x ∈ (a, b) ⊂ E, then PE(x) is two-
dimensional, whereas if x is a endpoint of a gap of E, then PE(x) is one-dimensional, as discussed
in [35] after Theorem 6.

We are particularly interested in the Martin kernel related to ∞. Since E is semibounded,
PE = PE(∞) is one-dimensional and we can talk about the Martin function M∞(z) = ME(z,∞)
related to ∞ which is known to be symmetric, i.e., M∞(z) = M∞(z). Moreover, all limits with
zn → −∞ must lead to M∞ and we have

M∞(z) = lim
z0→−∞

M(z, z0) = lim
z0→−∞

Im θz0(z)
GE(z∗, z0)

Note that M∞ is not exactly ME from the introduction, because in the general situation we cannot
use the normalization (1.2). For this reason, we keep the normalization at z∗, but once we have
specified to sets where the limit in (1.2) is positive, we can pass to this normalization. SinceM∞(z)
is positive and harmonic in Ω, setting λ2 = z−b0 it defines a positive harmonic function for λ ∈ C+
by

f(λ) = M∞(z).
Since f can be represented as

f(x+ iy) = ay +
∫

y

(x− t)2 + y2 dν(t),
∫ dν(t)

1 + t2
<∞ (2.6)

and

0 ≤ a = lim
y→∞

f(iy)
y

, (2.7)

we see that M∞(z) can grow at most as
√−z as z → −∞. In case of two-sided unbounded sets,

where the Martin function can grow at most linearly, Akhiezer and Levin showed that PE is two-
dimensional whenever the Martin function admits the maximal possible growth. This explains why
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we call E an Akhiezer–Levin set if

lim
z→−∞

M∞(z)√−z > 0. (2.8)

Note that by (2.7) this limit indeed exists in [0,∞). Since in (2.6), the integral
∫

y
(x−t)2+y2 dν(t)

defines again a positive harmonic function it follows that

aRe
√
b0 − z ≤M∞(z) (2.9)

in Ω. The following theorem presents a list of equivalent characterizations of M∞. We say that h
vanishes continuously at a point x ∈ E if limz→x

z∈Ω
h(z) = 0. We call a subset of Ω bounded if it is

bounded as a subset of C.

Theorem 2.1. Let H+,b(Ω) denote the set of positive harmonic functions on Ω that are bounded
on every bounded subset of Ω. Then, the following are equivalent:
(i) h ∈ H+,b(Ω) and h vanishes continuously for every Dirichlet-regular point of E;
(ii) h ∈ H+,b(Ω) and h vanishes continuously quasi-everywhere on E;
(iii) h ∈ H+,b(Ω) and h vanishes continuously ωE(·, z0)-a.e.;
(iv) h = cM∞, where c ≥ 0;

Proof. Due to [35, Remark 5, Theorem 6] (iv) =⇒ (i). Kellogg’s theorem [36, Corollary 6.4] yields
(i) =⇒ (ii) and by [36, Theorem III.8.2] we get that (ii) =⇒ (iii). It remains to show that
(iii) =⇒ (iv). Due to (2.4) there exists ν such that

h(z) =
∫

∂M1 Ω

ME(z, x)dν(x).

Let K ⊂ ∂MΩ \ {M∞} be compact. Then K has an open neighborhood U in Ω̂ such that U ∩ Ω
is bounded. As in the proof of [3, Theorem 8.4.1]

RKh (z) =
∫

K

ME(x, z)dν(x).

Since h ∈ H+,b(Ω), h is majorized by a constant in U ∩Ω, so RKh is a bounded harmonic function in
Ω which vanishes ωE(·, z0)-a.e. on the boundary. By the maximum principle [36, Theorem III.8.1]
it follows that RKh = 0. In particular, RKh (z∗) = ν(K) = 0. The claim follows. �

In his series of papers [48, 49, 50], Levin first systematically established the relation between
extremal problems and comb mappings imposing Dirichlet-regularity on the set E. Eremenko and
Yuditskii [32] provided a modern approach to it, giving a detailed proof for comb mappings for
Green functions as discussed above. It relies on the representation of Green functions for a compact
set E, as

GE(z,∞) =
∫

E

log |z − t|dρE(t) + γE , (2.10)

where Cap(E) = e−γE and ρE(X) = 0 for sets of zero capacity. It is also discussed that the proof
carry over for Martin functions and the corresponding description is given. Since we were not able
to find in our generality a reference for a representation of the type (2.10), which is certainly known
to experts, for the readers convenience we survey the corresponding theory in the following.
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Since M∞ vanishes quasi-everywhere, we can extend M∞ to a subharmonic function to all of C
by

M∞(x) = lim sup
z→x
z∈Ω

M∞(z), x ∈ E, (2.11)

see [3, Theorem 5.2.1]. Hence, we obtain a subharmonic, symmetric function in C, which is positive
and harmonic in C+ and C−. For the following result we refer to [49, Lemma 2.3] and its corollary.
It was initially proved for majorants of subharmonic functions, but it is mentioned that it extends
to the version stated below:

Lemma 2.2. Let v be a subharmonic, symmetric function in C, which is positive and harmonic in
C \ [b0,∞) for some b0 ∈ R. Then

v(z) = v(z∗) +
∫ ∞

b0

log
∣∣∣∣1−

z − z∗
t− z∗

∣∣∣∣ dν(t),
∫ ∞

b0

dν(t)
t− z∗

<∞, (2.12)

and for y > 0
∂v(x+ iy)

∂y
=
∫ ∞

b0

y

(t− x)2 + y2 dν(t) > 0. (2.13)

Remark. (2.12) is essentially the Hadamard representation for the subharmonic function v and
ν is its Riesz measure. Usually the Hadamard representation would include a normalization term
Re z
t , which is not needed due to the convergence property of ν in (2.12).

Lemma 2.3. Let Θ be such that ImΘ = M∞ for z ∈ C+ and ρ be the Riesz measure for M∞.
Then, the functions Θ and iΘ′ are Herglotz functions and in particular

iΘ′(z) =
∫

E

dρ(t)
t− z .

They can be analytically extended to C \ [b0,∞) and Θ′ 6= 0 there.

Proof. Applying Lemma 2.2 to M∞ gives a representation of the form (2.12) in terms of the Riesz
measure ρ supported on E and, in particular,

∫
E

dρ(t)
t−z∗ <∞. Moreover,

iΘ′(z) = c0 +
∫

E

dρ(t)
t− z (2.14)

for some c0 ∈ R, since the imaginary parts of the two sides are equal by (2.13). Since Θ is also a
Herglotz function, for some measure µ supported on E,

iΘ′(z) = i

∫ dµ(t)
(t− z)2 ,

∫ dµ(t)
1 + t2

<∞. (2.15)

Using monotone convergence and taking the limit as z → −∞ in (2.14) and (2.15) yields limz→−∞ iΘ′(z) =
0 = c0. Since iΘ′ is Herglotz, Θ′ 6= 0 in C+ and C−. Moreover, since it is increasing on (−∞, b0)
and vanishes at −∞ we obtain the final claim. �

The following lemma shows that, like the harmonic measure, ρ gives zero measure to polar sets.
Of course, once we introduce the Martin measure ρE, it will be a scalar multiple of ρ, so the following
claim will also hold for ρE.

Lemma 2.4. Let X ⊂ C be a Borel polar set. Then ρ(X) = 0.
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Proof. By [62, Theorem 3.2.3] it suffices to show that for each s > b0 we have
∫ s

b0

∫ s

b0

log |x− t|dρ(x)dρ(t) > −∞ (2.16)

By means of the subharmonic extension (2.11), M∞ is non-negative on C and we get

0 ≤
∫ s

b0

M∞(x)dρ(x) = d+ I1 + I2,

where

d = ρ(b0, s)
(

1−
∫ s

b0

log |t− z∗|dρ(t)
)
, I1 =

∫ s

b0

∫ s

b0

log |x− t|dρ(t)dρ(x),

I2 =
∫ s

b0

∫ ∞

s

log
∣∣∣∣1−

x− z∗
t− z∗

∣∣∣∣ dρ(t)dρ(x).

Since I2 ≤ 0, it follows that −∞ < −d ≤ I1, i.e., we have (2.16). �
It was already encountered in [49, Lemma 2.4] that there is an explicit connection between ρ

and the conformal map Θ defined in Lemma 2.3, see also [32]. Note that although in [49] Dirichlet-
regularity is assumed for the set E the proof of the following lemma holds also in our setting.
Namely, the Lebesgue measure on the base of the comb corresponds to the measure ρ on E. To be
more precise, ReΘ extends continuously to R and we have

ReΘ(b)− ReΘ(a) = πρ((a, b)). (2.17)
These are all the ingredients needed to describe the comb domains related to the conformal

mapping Θ. There exists a positive upper semicontinuous function s on (0, b), where b ∈ (0,∞]
such that Θ maps C+ conformally onto

Π = {x+ iy : 0 < x < b, y > s(x)}.
If b <∞ then lim supx→b s(x) =∞. We will show in Corollary 2.8 that b being finite corresponds
to ∞ being not Dirichlet-regular.

Example 2.5. In their classical work [55] Marchenko–Ostrovskii studied the relation between
spectra of 1-periodic L2 potentials on the real line and corresponding data of the mapping ΘE.
They showed that E is the spectrum of a Schrödinger operator of this type if and only if the
corresponding comb domain is of the form

ΠE = {x+ iy, x > 0, y > 0} \ {kπ + iy : k ∈ N, 0 ≤ y ≤ sk},
and the slit heights sk satisfy

∑∞
k=1 k

2s2
k <∞.

The next example demonstrates Akhiezer–Levin sets which don’t have an expansion of the form
(1.3).

Example 2.6. We will construct an explicit expression for the conformal map, Θ : C+ → Π =
C+ \ {n+ iy : n ∈ Z, 0 < y ≤ y0}, where y0 > 0 is an arbitrary but fixed parameter. We will show
that along the imaginary axis we have

Θ(iy) = iy + ic(y0) + o(1), as y →∞,
where, c(y0) is a real constant that depends monotonically on y0 and can attain in fact any real
value. Note that Θ can be continuously extended to R and that E := Θ−1(R) is symmetric,
E = −E = {−x, x ∈ E}. Hence, again by defining Θ̃(z) = Θ(λ2), the function M(z) = Im Θ̃(z)
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is an example for a Martin function of an Akhiezer–Levin set, which has a constant term in its
asymptotic expansion. The Christoffel–Darboux transformation

f1(w) = 1
π

∫ w

−1

dx√
1− x2

maps C+ onto Π1 = {ϑ = ξ + iη : η > 0, 0 < ξ < 1}. In particular f1(−1) = 0 and f1(1) = 1. We
choose ` > 1 so that iy0 = f1(−`) and consider

f2(w) = 1
π

∫ w

−`

dx√
`2 − x2

= f1(w/`).

Then Θ = f1 ◦ f−1
2 defines a conformal map Θ : Π1 → Π1 such that Θ(0) = iy0. By symmetry, we

can extend Θ to a conformal map from Θ : C+ → Π. Calculations of f1, f2 along the imaginary
axis give Θ(iy) = i cosh−1(` cosh(y)), so

Θ(iy) = iy + i log(`) + o(1), as y →∞.
We emphasize that in order to show that the limit in (2.8) is always finite for the Martin function,

it was only used that M∞ represents a positive harmonic function in Ω. This shows that the same
conclusion holds for any such function. In view of (2.4) this growth should also be reflected in
the corresponding asymptotic behavior of M∞, leading to the following criterion for E to be an
Akhiezer–Levin set.

Lemma 2.7. Assume that there exists a positive harmonic function in Ω such that

lim
z→−∞

h(z)√−z = 1.

Then Ω is Greenian and E is an Akhiezer–Levin set. Moreover, in this case we have
ME(z) ≤ h(z), (2.18)

for all z ∈ Ω, where ME is normalized by limz→−∞ME(z)/
√−z = 1.

Proof. By Myrberg’s theorem [3, Theorem 5.3.8] the existence of a non-constant positive harmonic
function on Ω implies that Ω is Greenian. Since h is a positive harmonic function in Ω there exists
a unique measure ν with ν(∂M1 Ω) = h(z∗) such that

h(z) =
∫

∂M1 Ω

M(z, x)dν(x).

In particular, ν({∞}) < ∞. Recall that #π−1({∞}) = 1. Since (−∞, b0) ⊂ Ω, the negative half
axis is clearly not minimally thin at ∞ so it follows by [3, Theorem 9.2.6] that

lim inf
z→−∞

h(z)
M∞(z) ≤ ν({∞}) <∞. (2.19)

Let λ2 = z − b0 and g(λ) = h(z) and f(λ) = M∞(z). Then f defines a positive harmonic function
in C+ and

f(x+ iy) = ay +
∫

y

(x− t)2 + y2 dµ(t), a = lim
y→∞

f(iy)
y

.

Hence,

0 < lim sup
z→−∞

M∞(z)
h(z) = lim sup

y→∞

f(iy)
g(iy) = lim sup

y→∞

f(iy)
y

= a.
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Hence, E is an Akhiezer–Levin set. Due to [3, Theorem 9.3.3] we have

ν({∞}) = inf
z∈Ω

h(z)
M∞(z) ≤

h(z)
M∞(z) (2.20)

and the second claim follows. Finally, (2.20) shows that we actually have equality in (2.19) and it
follows that ν({∞}) corresponds to the normalization of M∞ at ∞. �

Carleson and Totik [10] showed that PE(x0) being two-dimensional is equivalent to the fact that
GE(z, z0) is Lipschitz continuous at x0, where z0 is some arbitrary interior point. As a corollary
of the comb mapping representation for Θ, we show that E being an Akhiezer–Levin set implies
continuity at infinity. Note that by the aforementioned equivalence, one cannot hope for Lipschitz
continuity for semibounded sets, since in this case PE(∞) is always one-dimensional. Alternatively,
this could be seen from the fact that often, at a gap edge a, the Green function has behaviour
GE(z, z0) ∼ √z − a and thus is not Lipschitz continuous. Moreover, as discussed in [72] the set
E = R+ \ ∪n∈Zrn(a1, b1), where 0 < a1 < b1 and r > 1 provides an example of a set for which ∞
is Dirichlet-regular, but which is not an Akhiezer–Levin set. In this sense the following result is
optimal.

Corollary 2.8. Let E ⊂ R be closed and semibounded and Θ the corresponding comb-mapping. If
sup{ReΘ(z) : z ∈ C+} =∞, then ∞ is a Dirichlet-regular point of E. This holds in particular if E
is an Akhiezer–Levin set.

Proof. We will assume that lim supz0→−∞GE(z0, z∗) = ε > 0 in order to obtain a contradiction.
Note that sup{Re θz0(z) : z ∈ C+} = π, so for any z ∈ C+,

lim
z0→−∞

Re θz0(z)
GE(z∗, z0) ≤ lim inf

z0→−∞
π

GE(z∗, z0) .

Since Θ(z) = limz0→−∞
θz0 (z)

GE(z∗,z0) , taking the supremum over z ∈ C+ gives sup{ReΘ(z) : z ∈
C+} ≤ ε−1π < ∞. Now, as already mentioned in [32], using upper semicontinuity of h it follows
that vanishing of the radial limit of GE(z0, z∗) implies Dirichlet-regularity. Let Im θz∗ = GE(z, z∗)
and it will be more convenient to shift the mapping by −π. Then, limz0→−∞GE(z0, z∗) = 0
implies that lim supu→0 h(u) = 0. Therefore, (−∞, z∗) is mapped by θz∗ onto iR+ and we can
extend θz∗ by symmetry to C \ (R \ (−∞, z∗)). In particular iR+ is an interior ray of the image,
Πe = Πz∗ ∪ iR+∪{−x+ iy : x+ iy ∈ Πz∗}, of this extended map. lim supu→0 h(u) = 0 now implies
that Πe is locally connected at 0 and hence, θz∗ can be continuously extended to 0 which implies
that ∞ is a Dirichlet-regular point. This finishes the proof of the first claim.

In view of (2.17), sup{ReΘ(z) : z ∈ C+} <∞ means that ρ is finite. We show that this implies
that M∞ can grow at most like ρ(R) log |z| and therefore E is not an Akhiezer–Levin set. Let’s
assume that |z∗ − b0| > 1 and z∗ < 0. Then, using (2.12) we see that for z < z∗ we have

M∞(z)− ρ(R) log |z| = M∞(z∗) +
∫ ∞

b0

log
∣∣∣∣

1
t− λ∗

(
1− z∗

z

)∣∣∣∣ dρ(t) ≤M∞(z∗). �

For Akhiezer–Levin sets one could also use the result of Carleson and Totik and the substitution
λ2 = z − b0 to see that GE is Hölder continuous with exponent 1/2 at ∞.
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3. Asymptotic behavior of eigensolutions

We now turn our attention to the Schrödinger operator LV and associated objects. Fundamental
solutions at z ∈ C are defined as solutions u(x, z), v(x, z) of the initial value problems

−∂2
xu+ (V (x)− z)u = 0, u(0, z) = 0, (∂xu)(0, z) = 1 (3.1)

−∂2
xv + (V (x)− z)v = 0, v(0, z) = 1, (∂xv)(0, z) = 0 (3.2)

The natural regularity class for the solutions are functions which are inW 2,1([0, x]) for every x <∞,
and the differential equations are interpreted as equality of L1 functions, i.e., equality Lebesgue-a.e..
It is useful to substitute

k =
√
−z

and view the initial value problems as perturbations by V of −∂2
x+k2. We will always assume that

Re k ≥ 0; this can be done pointwise throughout C, and later we will view k as a branch of the
square root such that Re k > 0 if z ∈ C \ [0,∞). Note also that this makes Im k < 0 if z ∈ C+. By
choosing the branch

√
z = ik, we see that

√
z ∈ C+ if z ∈ C \ [0,∞). In particular, Im

√
z = Re k.

The fundamental solutions for V = 0 are the functions

c(x, k) = cosh(kx), s(x, k) =
{

sinh(kx)
k k 6= 0

x k = 0
.

By standard arguments, for general V ∈ L1([0, 1]), the initial value problems (3.1), (3.2) are rewrit-
ten as integral equations, and by Volterra-type arguments, convergent series representations are
then found for the fundamental solutions. With the notation ∆n(x) = {t ∈ Rn | x ≥ t1 ≥ t2 ≥
· · · ≥ tn ≥ 0}, the series representations for fundamental solutions and their first derivatives are

u(x, z) = s(x, k) +
∞∑

n=1

∫

∆n(x)
s(x− t1, k)



n−1∏

j=1
V (tj)s(tj − tj+1, k)


V (tn)s(tn, k)dnt (3.3)

v(x, z) = c(x, k) +
∞∑

n=1

∫

∆n(x)
s(x− t1, k)



n−1∏

j=1
V (tj)s(tj − tj+1, k)


V (tn)c(tn, k)dnt (3.4)

(∂xu)(x, z) = c(x, k) +
∞∑

n=1

∫

∆n(x)
c(x− t1, k)



n−1∏

j=1
V (tj)s(tj − tj+1, k)


V (tn)s(tn, k)dnt (3.5)

(∂xv)(x, z) = k2s(x, k) +
∞∑

n=1

∫

∆n(x)
c(x− t1, k)



n−1∏

j=1
V (tj)s(tj − tj+1, k)


V (tn)c(tn, k)dnt (3.6)

These expansions are derived, e.g., in [61] for V ∈ L2([0, x]), but they hold for V ∈ L1([0, x]) as
well, due to the estimate

∣∣∣∣∣∣

∫ x

0

∫ t1

0
· · ·
∫ tn−1

0
eRe k(x−t1)




n∏

j=1
V (tj)eRe k(tj−tj+1)


V (tn)eRe ktn dtn . . . dt2 dt1

∣∣∣∣∣∣

≤ 1
n!

(∫ x

0
|V (s)|ds

)n
eRe kx

(3.7)
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which is proved by combining the exponentials and using permutations of t and symmetry, and the
elementary estimates which follow directly from Euler’s formula,

|c(x, k)| ≤ eRe kx, |s(x, k)| ≤ |k|−1eRe kx. (3.8)
The same estimates which guarantee convergence, provide exponential upper bounds on eigensolu-
tions; these are often stated over a fixed interval, but we will need a kind of uniformity in x:

Lemma 3.1. For all z = −k2 ∈ C and x > 0,

|u(x,−k2)| ≤ e(1+Re k)x+
∫ x

0
|V (t)|dt

. (3.9)

Proof. Using |s(x, k)| = |
∫ x

0 c(t, k)dt| ≤ xeRe kx ≤ e(1+Re k)x and then applying (3.7) to each term
of (3.3) implies that

|u(x,−k2)| ≤ e(1+Re k)x
∞∑

n=0

1
n!

(∫ x

0
|V (t)|

)n
. �

Corollary 3.2. If V obeys (1.1), for each R > 0 there exists CR such that for all |z| ≤ R and
x ≥ 1 we have 1

x log|u(x, z)| ≤ CR.

Proof. This is an immediate consequence of the previous lemma together with
∫ x

0 |V (t)|dt ≤ C(x+
1) ≤ 2Cx for x ≥ 1, where C = supx≥0

∫ x+1
x
|V (t)|dt. �

We will need asymptotic statements about m-functions. Such statements are ubiquitous, espe-
cially for smooth potentials; we need an asymptotic expansion which doesn’t assume any smooth-
ness.

Lemma 3.3. For fixed x > 0, as z →∞, arg z ∈ [δ, 2π − δ],

− v(x, z)
u(x, z) = −k −

∫ x

0
V (t)e−2kt dt+ 1

k

∫ x

0

∫ t1

0
e−2kt1(1− e−2kt2)V (t1)V (t2) dt2 dt1 +O(|k|−2)

uniformly in V in bounded subsets of L1([0, x]).

Proof. Assume that
∫ x

0 |V (t)|dt ≤ C. Denote

An = 2kn+1e−kx
∫

∆n(x)
s(x− t1, k)



n−1∏

j=1
V (tj)s(tj − tj+1, k)


V (tn)s(tn, k) dnt,

Bn = 2kne−kx
∫

∆n(x)
s(x− t1, k)



n−1∏

j=1
V (tj)s(tj − tj+1, k)


V (tn)c(tn, k) dnt,

From (3.8) and (3.7) it follows that |An|, |Bn| ≤ 2Cn
n! . In the nontangential limit z → ∞, arg z ∈

[δ, 2π − δ], we have the elementary estimates
s(x, k)
ekx

2k
= 1− e−2kx = 1 +O(|k|−3), c(x, k)

ekx

2
= 1 + e−2kx = 1 +O(|k|−3),

so the series expansions for u(x, z), v(x, z) imply

u(x, z) = ekx

2k

(
1 + A1

k
+ A2
k2 +O(|k|−3)

)
,
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v(x, z) = ekx

2

(
1 + B1

k
+ B2
k2 +O(|k|−3)

)
,

with the error O(|k|−3) depending only on C and δ. Dividing,

− v(x, z)
u(x, z) = −k

(
1 + B1 −A1

k
+ B2 −A2 −A1(B1 −A1)

k2 +O(|k|−3)
)
. (3.10)

Moreover,

B1 −A1 =
∫ x

0
(1− e−2k(x−t))V (t)e−2kt dt =

∫ x

0
V (t)e−2kt dt+O(e−2 Re kx) (3.11)

Multiplying by A1 = 1
2
∫ x

0 (1 − e−2k(x−s))V (s)(1 − e−2ks) ds gives a formula for A1(B1 − A1) as a
double integral over [0, x]2, and using the substitution t1 = max{s, t}, t2 = min{s, t} gives

A1(B1 −A1) = 1
2

∫ x

0

∫ t1

0
(e−2kt1 + e−2kt2 − 2e−2k(t1+t2) − e−2k(x−t1+t2))V (t1)V (t2) dt2 dt1

+O(e−2 Re kx)

(some terms are grouped into the error O(e−2 Re kx) since, e.g., x− t2 + t1 ≥ x). Similarly,

B2 −A2 = 1
2

∫ x

0

∫ t1

0
(1− e−2k(x−t1))V (t1)(1− e−2k(t1−t2))V (t2)e−2kt2 dt2 dt1

= 1
2

∫ x

0

∫ t1

0
(e−2kt2 − e−2kt1 − e−2k(x−t1+t2))V (t1)V (t2) dt2 dt1 +O(e−2 Re kx)

Substituting these formulas into (3.10) concludes the proof. �

Returning to the half-line setting from the introduction, we recall that half-line potentials obeying
the boundedness assumption (1.1) are in the limit point case at +∞, i.e., for every z ∈ C \ E, the
set of solutions of

−∂2
xψ + V ψ = zψ, ψ ∈ L2((0,∞))

is one-dimensional. Any such nontrivial solution is called the Weyl solution; it is uniquely deter-
mined up to normalization and we will not fix any particular normalization. We will use

m(x, z) = (∂xψ)(x, z)
ψ(x, z) . (3.12)

Proposition 3.4. As z →∞, arg z ∈ [δ, π − δ],

m(s, z) = −k −
∫ 1

0
V (s+ t)e−2kt dt

+ 1
k

∫ 1

0

∫ t1

0
e−2kt1(1− e−2kt2)V (s+ t1)V (s+ t2) dt2 dt1 +O(|k|−2)

and the error is uniform in s ∈ [0,∞) if V obeys (1.1).

Proof. By an argument of Atkinson [4], for arg z ∈ [δ, π − δ], the Weyl circle at x has radius

r = 2|k|2
|Im k|e

−2xRe k(1 +O(|k|−1))

which decays exponentially as z → ∞, arg z ∈ [δ, π − δ]; the error term O(|k|−1) is uniform for
V in bounded subsets of [0, x], since this term is derived by arguments like those in the proof of
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Lemma 3.3. Since m+(0, z) lies inside the Weyl circle and −v(1, z)/u(1, z) lies on the circle, this
radius allows us to estimate∣∣∣∣m(0, z) + v(1, z)

u(1, z)

∣∣∣∣ ≤
4|k|2
|Im k|e

−2 Re k(1 +O(|k|−1)).

In the nontangential limit as arg z ∈ [δ, π− δ], this error is O(|k|−2), so the previous lemma implies

m(0, z) = −k −
∫ 1

0
V (t)e−2kt dt+ 1

k

∫ 1

0

∫ t1

0
e−2kt1(1− e−2kt2)V (t1)V (t2) dt2 dt1 +O(|k|−2).

Applying this for an arbitrary s ≥ 0 to the translated half-line potential Vs(x) = V (x+s) on [0,∞)
concludes the proof. �

For the half-line operator LV , the Dirichlet solution can be interpreted as the Weyl solution
corresponding to the endpoint 0. Therefore, the Atkinson argument can be applied also “in reverse”,
to produce uniform asymptotics on the logarithmic derivative of u(x, z). To produce uniform
asymptotics, we fix the interval length 1, as in the previous proof:

Corollary 3.5. As z →∞, arg z ∈ [δ, π − δ], for all s ≥ 1,

− (∂xu)(s, z)
u(s, z) = −k −

∫ 1

0
V (s− t)e−2kt dt

+ 1
k

∫ 1

0

∫ t1

0
e−2kt1(1− e−2kt2)V (s− t1)V (s− t2) dt2 dt1 +O(|k|−2)

and the error is uniform in s ∈ [1,∞) if V obeys (1.1).

To make some uniform statements for a family of Herglotz functions, we will use the Carathéodory
inequality for the half-plane [47, Proof of Theorem I.8]: for any Herglotz function f ,

|f(z)| ≤ |f(i)|+ Im f(i) 2|z − i|
|z + i| − |z − i| , ∀z ∈ C+. (3.13)

Lemma 3.6. Fix a potential V which obeys (1.1). For each z ∈ C+,

sup
x≥1

∣∣∣∣
(∂xu)(x, z)
u(x, z)

∣∣∣∣ <∞. (3.14)

Proof. The ratio −(∂xu)(x, z)/u(x, z) is a Herglotz function and obeys the nontangential asymp-
totics in Corollary 3.5. The error is uniform in x ≥ 1 since V obeys (1.1). In particular, for z = iy0
with some fixed y0 > 0 large enough, Corollary 3.5 implies an upper bound independent of x and
therefore (3.14). By rescaling by y0 and using (3.13), the upper bound at iy0 implies uniform upper
bounds for z in compact subsets of C+. �

For z /∈ σ(LV ), ψ decays exponentially as x → ∞. The Weyl solution ψ and the Dirichlet
solution u are related by the Wronskian

W (ψ, u) = (∂xu)(x, z)ψ(x, z)− (∂xψ)(x, z)u(x, z)
which is independent of x and nonzero, since u, ψ are linearly independent (otherwise they would
give an eigenvalue of LV ). This strongly suggests that u should grow at the same rate at which ψ
decays, but a proof based only on the Wronskian is difficult due to the derivative, especially if a
pointwise statement is desired. We therefore use a different argument:
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Lemma 3.7. Fix a potential V which obeys (1.1). For each z ∈ C+, there exists C such that for
all x ∈ [1,∞),

C−1 ≤ |u(x, z)ψ(x, z)| ≤ C.
Proof. We use the diagonal (spectral theoretic) Green’s function for LV ,

g(x, x; z) = u(x, z)ψ(x, z)
W (ψ, u) , (3.15)

which can be written as

− 1
g(x, x; z) = (∂xψ)(x, z)

ψ(x, z) − (∂xu)(x, z)
u(x, z) . (3.16)

Using the above asymptotics for m-functions gives a well known asymptotic statement,

g(x, x; z) = 1
2
√−z +O(|z|−1), z →∞, arg z ∈ [δ, π − δ],

and the proof given here shows that this asymptotic behavior is uniform in x ∈ [1,∞), since V
obeys (1.1). In particular, for some fixed z = iy with y large enough, this implies

sup
x∈[1,∞)

|g(x, x; iy)| <∞, inf
x∈[1,∞)

|g(x, x; iy)| > 0.

Rescaling z by a factor y and applying (3.13) to the Herglotz functions g(x, x; z) and −1/g(x, x; z)
implies uniform upper and lower bounds on compact subsets of C+.

For any z ∈ C+, the Wronskian is nonzero and independent of x, so by (3.15), uniform bounds
in x for g(x, x; z) imply uniform bounds in x (for each z ∈ C+) for u(x, z)ψ(x, z). �

The growth rate of u(x, z) can now be expressed in terms of averages of the m-functions:

Corollary 3.8. For any z ∈ C+,

lim sup
x→∞

∣∣∣∣
1
x

log u(x, z) + 1
x

∫ x

0
m(s, z)ds

∣∣∣∣ = 0. (3.17)

Proof. This follows from Lemma 3.7 since m(x, z) is the logarithmic derivative of ψ(x, z). �

Expansions for m(s, z) are often stated in terms of values of V and its derivatives at s, but such
expansions assume some regularity of V , and the error terms in such expansions are usually not
uniform in the appropriate local norm for V . By working directly with the expansion in Prop. 3.4,
we can obtain uniform expansions for the averages without imposing any regularity on V .

Corollary 3.9. If V obeys (1.1),

lim sup
x→∞

∣∣∣∣
1
x

∫ x

0
m(s, z)ds+ k + 1

2kx

∫ x

0
V (s)ds

∣∣∣∣ = O(|k|−2), (3.18)

as z = −k2 →∞, arg z ∈ [δ, π − δ], for any δ > 0.

Proof. Due to the uniformity of the error in the asymptotic expansion from Prop. 3.4,
1
x

∫ x

0
m(s, z) ds = −k − 1

x

∫ x

0

∫ 1

0
V (s+ t)e−2ktdtds

+ 1
kx

∫ x

0

∫ 1

0

∫ t1

0
e−2kt1(1− e−2kt2)V (s+ t1)V (s+ t2)dt2dt1ds+O(|k|−2)
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with the error term independent of x. For the term linear in V , we use p = s + t to rewrite the
iterated integral as

∫ 1
0
∫ x+t
t

V (p)e−2ktdpdt. Then we wish to note that

1
x

∫ 1

0

∫ x+t

t

V (p)e−2ktdpdt = 1
x

∫ 1

0

∫ x

0
V (p)e−2ktdpdt+O(x−1), x→∞, (3.19)

for any k. This is because the two iterated integrals describe similar regions in R2: the symmetric
difference of the regions {(t, p) | 0 ≤ t ≤ 1, t ≤ p ≤ x + t} and {(t, p) | 0 ≤ t ≤ 1, 0 ≤ p ≤ x}
is contained in [0, 1] × ([0, 1] ∪ [x, x + 1]), and the double integral over that region is bounded
uniformly in x due to (1.1). Now the integral in (3.19) separates and simplifies using

∫ 1
0 e
−2ktdt =

1
2k + O(e−2 Re k). By analogous arguments, using q = s + t2 to rewrite the quadratic term and
comparing the regions {(t1, t2, q) | 0 ≤ t2 ≤ t1 ≤ 1, t2 ≤ q ≤ x+ t2} and {(t1, t2, q) | 0 ≤ t2 ≤ t1 ≤
1, 0 ≤ q ≤ x},

1
kx

∫ x

0

∫ 1

0

∫ t1

0
e−2kt1(1− e−2kt2)V (s+ t1)V (s+ t2)dt2dt1ds

= 1
kx

∫ 1

0

∫ t1

0

∫ x

0
e−2kt1(1− e−2kt2)V (q + t1 − t2)V (q)dqdt2dt1 +O(x−1)

= 1
kx

∫ 1

0

∫ x

0
h(u)V (q + u)V (q)dqdu+O(x−1)

as x→∞, for any k. For the last step we introduced u = t1−t2 ∈ [0, 1] and h(u) =
∫ 1−u

0 e−2k(u+t2)(1−
e−2kt2)dt2. For the remaining double integral, it is elementary to estimate that h(u) = O(|k|−1)
uniformly in u ∈ [0, 1] and that

1
x

∫ 1

0

∫ x

0
|V (q + u)V (q)|dqdu ≤ C2

where C denotes the sup in (1.1), so (3.18) follows. �

4. Regular measures for half-line Schrödinger operators

The main part of this section is devoted to the study of limits of the function

h(x, z) := 1
x

log |u(x, z)|, (4.1)

as x→∞. Our first goal is to show that for z ∈ C+ we have that lim infx→∞ h(x, z) ≥ 0.

Lemma 4.1. Fix z ∈ C+. Then

lim inf
x→∞

1
x

log |u(x, z)| ≥ 0.

Proof. Note first of all that u(x, z) 6= 0 whenever x > 0, because the converse would correspond
to an complex eigenvalue for the self-adjoint realization of LV on [0, x] with Dirichlet boundary
conditions. The Weyl solution ψ(x, z) is an eigensolution and is in L2((0,∞)); the condition (1.1)
is sufficient to conclude that ψ decays pointwise [52, Theorem 1.1], i.e.

lim
x→∞

ψ(x, z) = 0.

Combining with Lemma 3.7 shows that |u(x, z)| → ∞ as x→∞, which completes the proof. �

Let E = σess(LV ) written in the form (1.4). That is b0 = min E and (aj , bj) denote the gaps of E.
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Lemma 4.2. For any ε > 0 there exists x0 > 0 such that u(x, z) 6= 0 for x > x0 and z ≤ b0 − ε.
Moreover, let nj(ε) denote the finite number of eigenvalues in (aj + ε, bj − ε). Then, for any x > 0,
u(x, z) has at most nj(ε) + 1 zeros in (aj + ε, bj − ε).
Proof. Since LV is semibounded there are at most finitely many eigenvalues below b0 − ε. Hence,
the first statement follows by Sturm oscillation theory.

As in the proof of Lemma 3.7, we use the spectral theoretic Green’s function g(x, x; z). By the
Weyl M -matrix representation for LV centered at x, g(x, x; ·) is analytic on C \σ(LV ) and, since it
is Herglotz, it is strictly increasing on intervals in R\σ(LV ). In particular, every pole of g(x, x; ·) is
an eigenvalue of LV , so it has at most nj(ε) poles in (aj+ε, bj−ε). By (3.16), every zero of u(x, z) is
a pole of −(∂xu)(x, z)/u(x, z) and a zero of g(x, x; ·). Since zeros and poles of the Herglotz function
g(x, x; ·) strictly interlace on intervals in the domain of meromorphicity, it follows that u(x, z) has
at most nj(ε) + 1 zeros in (aj + ε, bj − ε). �

We are now ready to study the existence of limit points for the family of functions F =
{h(x, z)}x∈[1,∞). Since u(x, ·) are entire functions, the functions h(x, ·) are subharmonic in C, and
they can be viewed as elements of the space of distributions D′(C) with nonnegative distributional
Laplacian.

Theorem 4.3. (a) The family F = {h(x, z)}x∈[1,∞) is precompact in D′(C).
(b) For any sequence (xj)∞j=1 with xj → ∞ such that h(xj , ·) converges in D′(C), the limit h =

limj→∞ h(xj , ·) is also a subharmonic function on C, harmonic on C \ E, and h(xj , ·) also
converge to h uniformly on compact subsets of C \ E.

Proof. (a) By Corollary 3.2, h(x, z) is uniformly bounded from above on compact subsets of C.
Moreover, Lemma 4.1 implies a pointwise lower bound at some arbitrary point z0 ∈ C+. Hence,
[39, Theorem 4.1.9] shows that F is precompact in the topology of D′(C).

(b) On C+ and on C−, the functions h(x, z) are harmonic and uniformly bounded above. Since
they are also pointwise bounded below, they are uniformly bounded and uniformly equicontinuous
on each compact subset of C±. Therefore, they are precompact in the topology of uniform con-
vergence on compact subsets of C±. Since this convergence implies convergence in L1

loc(C±), it
follows that if the sequence h(xj , ·) converges in D′(C) to h, then it also converges to h uniformly
on compact subsets of C±.

Next, we show that h has a harmonic extension through an arbitrary gap (am, bm) of E. Fix
ε > 0. By Lemma 4.2, there are at most nm(ε) + 1 zeros of u(xj , z) in (am + ε, bm − ε). Let pj
be the monic polynomial of degree at most nm(ε) + 1 which vanishes exactly at these zeros. Now
consider

fj(z) = 1
xj

log
∣∣∣∣
u(xj , z)
pj(z)

∣∣∣∣ ,

which is harmonic on C+∪C−∪(am+ε, bm−ε). On the boundary of the rectangle (am−1, bm+1)×
(−1, 1), pj is uniformly bounded below by 1, so by the maximum principle, the analytic functions
u(xj ,z)
pj(z) are also bounded above by ecxj in this rectangle for some constant c. Hence, fj(z) is locally
uniformly bounded above on Rm = (am + ε, bm − ε)× (−1, 1). Since all zeros of pj are in (am, bm),
there is still a pointwise lower bound for z0 ∈ C+. Hence, the functions fj are harmonic on Rm
and precompact in the topology of uniform convergence on compacts. For any z ∈ Rm \ R,

lim
j→∞

(hj(z)− fj(z)) = lim
j→∞

1
xj

log|pj(z)| = 0
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since |Im z|nm(ε)+1 ≤ |pj(z)| ≤ (bm − am + 1)nm(ε)+1. Hence, any subsequential limit of the fj(z)
is a harmonic function on Rm which agrees with h on Rm \ R. It follows that fj converge in
Rm uniformly on compacts, so it provides a harmonic extension for h through (am + ε, bm − ε).
Since ε > 0 was arbitrary and the extensions must coincide on their common domain, we obtain
an extension through (am, bm) by letting ε → 0. It follows from the weak identity principle for
subharmonic functions [62, Theorem 2.7.5] that the harmonic extension coincided with h.

Consider a compact K ⊂ C \ [b0,∞). By possibly increasing K, assume that K 6⊂ R. Choose an
open set U such that K ⊂ U ⊂ U ⊂ C \ [b0,∞). By Lemma 4.2, for all sufficiently large j, hj(z)
is harmonic in U . The functions hj are uniformly bounded above and pointwise bounded below at
z0 ∈ K ∩ (C+ ∪ C−), so they form a precompact sequence with respect to uniform convergence on
K. As before, every limit is equal to h, so hj converge to h uniformly on compacts. �

Collecting our results now yields that the limits define a positive harmonic function in Ω = C\E.

Theorem 4.4. Let xj → ∞ be a sequence such that hj = h(xj , ·) converge in D′(C). Then
h = lim

j→∞
hj defines a positive harmonic function in Ω, the limit

a = lim
j→∞

1
xj

∫ xj

0
V (x)dx (4.2)

exists, and h has the nontangential asymptotic behavior

h(z) = Re
(
k + a

2k

)
+O(|k|−2), (4.3)

z →∞, δ ≤ arg z ≤ 2π − δ, for any δ > 0.

Proof. Harmonicity of h was proved in Theorem 4.3 and positivity in C+∪C− follows from Lemma
4.1. That h is also positive in R \ E follows by the maximum principle for harmonic functions, and
by Corollary 3.8,

h(z) = − lim
j→∞

1
xj

Re
∫ xj

0
m(x, z)dx. (4.4)

Denote c = min σ(LV ). By general spectral theory, then m(x, z) are analytic functions on C\ [c,∞)
and m(x, z) < 0 on (−∞, c). Since convergence of analytic functions follows from convergence of
their real parts together with convergence at one point, from Imm(x, z) = 0 for z < c together with
(4.4), it follows that the limit

w(z) = lim
j→∞

1
xj

∫ xj

0
m(x, z)dx

converges uniformly on compact subsets of C \ [c,∞). If a denotes some accumulation point of the
sequence 1

xj

∫ xj
0 V (x)dx, applying Corollary 3.9 along the subsequence and using uniformity of the

error term, it follows that
w(z) = −k − a

2k +O(|k|−2) (4.5)

nontangentially as z →∞, with arg z ∈ [δ, π − δ]. This asymptotic behavior can only hold for one
value of a, so it follows that the limit (4.2) exists.

We know that (4.5) holds as z → ∞ with arg z ∈ [δ, π − δ] and, by symmetry, for arg z ∈ [π +
δ, 2π−δ]. It remains to extend this asymptotic behavior to a sector of the form arg z ∈ [π−δ, π+δ].
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Without loss of generality assume c = 0. Since Rew = −h ≤ 0, the function f(λ) = −iw(λ2) is
Herglotz, and obeys

f(λ) = λ− a

2λ +O(|λ|−2), |λ| → ∞, (4.6)

along the rays arg λ = π/2− δ/2 and arg λ = π/2 + δ/2. In the sector T = {λ : π/2− δ/2 ≤ arg λ ≤
π/2 + δ/2}, the function g(λ) = λ2 (f(λ)− λ+ a

2λ
)
is analytic. It has a continuous extension to

T with g(0) = 0, because f(λ) = O(1/λ) as λ → 0 nontangentially. By (4.6), g is bounded on the
boundary of T . Finally, since f is Herglotz, f, g grow at most polynomially as λ → ∞, λ ∈ T , so
by Phragmén–Lindelöf, g is bounded in T . This implies that f has the asymptotic behavior (4.6)
also in the sector T . Rewriting the conclusion for w and h = −Rew completes the proof. �

We need the following variant of the Herglotz representation:

Lemma 4.5. Let f be a Herglotz function. Assume that Im f(iy) = O(y−1) as y → ∞. Then for
some β ∈ R

f(λ) = β +
∫

R

dµ(t)
t− λ , with lim

y→∞
y Im f(iy) = µ(R) <∞,

and

f(λ) = β − µ(R)
λ

+ o(|λ|−1), (4.7)

λ→∞, δ ≤ arg λ ≤ π − δ, for any δ > 0.

Proof. Starting from the Herglotz representation, we can write Im f(iy) = ay +
∫

y
t2+y2 dµ(t), with

lim
y→∞

Im f(iy)
y = a. Hence, by our assumption, a = 0. Moreover, by monotone convergence

lim
y→∞

y Im f(iy) = lim
y→∞

∫
y2

t2 + y2 dµ(t) = µ(R).

By our assumption, this shows that µ(R) < ∞. We have λ
∫
R

dµ(t)
t−λ + µ(R) =

∫
R

t
t−λdµ(t) → 0 as

λ→∞, by dominated convergence since
∣∣∣ t
t−λ

∣∣∣ ≤ 1
sin δ . �

We are now ready to prove an asymptotic expansion (1.3) of higher order for ME.

Proof of Theorem 1.1. By translation, we may assume that 0 = min E. By precompactness of the
family {h(x, z)}x≥1, there is a sequence xn →∞ for which the limit h = limn→∞ 1

xn
log|u(xn, ·)| is

convergent in D′(C). By Theorem 4.4, h is a positive harmonic function in Ω and h(z)/
√−z → 1

as z → −∞, so by Lemma 2.7, Ω is Greenian, obeys the Akhiezer–Levin condition, and h ≥ME in
Ω. Using (2.9), we obtain for z ∈ Ω

Re
√
−z ≤ME(z) ≤ h(z). (4.8)

Hence, the difference ME(−k2) − Re k defines a positive harmonic function in Ω and (4.3), (4.8)
imply that ME(−k2)− Re k = O(|k|−1). Set z = λ2 and v(λ) = ME(−k2)− Re k. We thus obtain
a positive harmonic function in C+ such that v(iy) = O(y−1). By Lemma 4.5 there is a constant c
such that

v(λ) = − Im
( c
λ

)
+ o(|λ|−1)
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as λ→∞ nontangentially in C+. Recalling that λ = ik, this shows that

ME(−k2)− Re k = Re
( c
k

)
+ o(|k|−1).

This completes the proof. �

Proof of Theorem 1.2. Consider a sequence xn →∞ such that

lim
n→∞

1
xn

∫ xn

0
V (t) dt = lim inf

x→∞
1
x

∫ x

0
V (t) dt.

Due to Theorem 4.3, this sequence has a subsequence for which the limit h = limj→∞ 1
xnj

log|u(xnj , ·)|
is convergent in D′(C). As in the proof of Theorem 1.1, we have h ≥ ME in Ω. Theorem 1.1 and
Theorem 4.4 yield

aE = lim
k→+∞

2k(ME(−k2)− k) ≤ lim
k→+∞

2k(h(−k2)− k) = lim
j→∞

1
xnj

∫ xnj

0
V (s) ds. �

Proof of Theorem 1.3. Fix z0 ∈ C \ [min E,∞) and consider a sequence xn →∞ such that

lim
n→∞

1
xn

log|u(xn, z0)| = lim inf
x→∞

1
x

log|u(x, z0)|.

We can again pass to a subsequence such that h = limj→∞ 1
xnj

log|u(xnj , ·)| and h ≥ ME in Ω. In
particular,

lim inf
x→∞

1
x

log|u(x, z0)| = h(z0) ≥ME(z0). �

Proof of Theorem 1.5. By inclusions, we have (vi) =⇒ (iv) and (v) =⇒ (iv).
(iv) =⇒ (vi): Consider any sequence xj →∞ such that the limit h = limj→∞ h(xj , ·) converges.

The limit h obeys h ≥ME on C+ by Theorem 1.3 and obeys h(z) ≤ME(z) for some z ∈ C+. By the
maximum principle, h = ME on C+, and then on Ω by harmonic continuation. Thus,ME is the only
possible subsequential limit of h(x, ·) as x → ∞, so by precompactness, limx→∞ h(x, z) = ME(z)
uniformly on compact subsets of C \ [b0,∞).

(vi) =⇒ (v): Given (vi), we know that for any convergent sequence h(xn, z) the limit is ME.
For z ∈ [b0,∞) we have by [6, Theorem 2.7.4.1] that

lim sup
n→∞

h(xn, z) ≤ (lim sup
n→∞

h(xn, z))̌ = ME(z),

where f̌ denotes the upper semicontinuous regularization of f . The first inequality follows by the
general fact that f ≤ f̌ .

(v) =⇒ (ii): This follows from Theorem 2.1.
(ii) =⇒ (iii): Due to [36, Corollary 6.4] the set of Dirichlet-irregular points is polar and thus,

by [36, Theorem 8.2] it is of harmonic measure zero and the claim follows.
(iii) =⇒ (vi): Take a sequence xn → ∞ such that limn→∞ h(xn, z) = h(z) in D′(C) and

uniformly on compact subsets of C \ [b0,∞). Due to the upper envelope theorem [6, Theorem
2.7.4.1], there is a polar set X1 such that for any z ∈ C \X1,

lim sup
n→∞

h(xn, z) = h(z).
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On the other hand, assuming (iii), there existsX2 with ωE(X2, z0) = 0, such that for t ∈ E\(X1∪X2)
by upper semicontinuity

0 ≤ lim inf
z→t
z∈Ω

h(z) ≤ lim sup
z→t
z∈Ω

h(z) ≤ h(t) ≤ 0.

Since ωE(X1 ∪X2, z0) = 0, Theorem 2.1 gives h = cME. Comparing the leading order asymptotic
behavior at ∞ shows that c = 1. Thus, ME is the only possible subsequential limit of h(x, ·) as
x→∞, so by precompactness, limx→∞ h(x, z) = ME(z) uniformly on compact subsets of C\[b0,∞).

(vi) =⇒ (i): By Theorem 4.4, (vi) implies that 1
xj

∫ xj
0 V (t)dt→ aE for every sequence xj →∞,

so (i) follows.
(i) =⇒ (vi): Take a sequence xn → ∞ such that h = limn→∞ h(xn, ·) converges in D′(C).

Define v(λ) = h(−k2) −M(−k2). Similarly to the proof of Theorem 1.1, this yields a positive
harmonic function in C+. By Theorem 4.4 and Theorem 1.1, v(iy) = o

(
y−1) as y → ∞. By

Lemma 4.5, limy→∞ yv(iy) = 0 implies that v ≡ 0. This shows that ME is the only subsequential
limit of h(x, ·) as x→∞. By precompactness, (vi) follows. �

The functions u(x, z) are entire functions of order 1
2 and as such admit a product representation

u(x, z) = u(x, z∗)
∞∏

j=1

(
1− z − z∗

zj − z∗

)
,

where zj depend on x and z∗ is some normalization point. Then the Riesz measure, ρx, of the
subharmonic function log |u(x, z)| is a rescaled zero counting measure of u(x, z). That is,

1
x

log |u(x, z)| = 1
x

log |u(x, z∗)|+
∫

log
∣∣∣∣1−

z − z∗
t− z∗

∣∣∣∣ dρx(t),

where ρx is defined in (1.7).

Proof of Theorem 1.6. By Theorem 1.5 and Theorem 4.3, h(x, ·) → ME in D′(C) as x → ∞. By
the definition of the Riesz measure, for any φ ∈ C∞c (C),

lim
x→∞

2π
∫
φ(z)dρx(z) = lim

x→∞

∫
h(x, z)∆φ(z)dλ(z)

=
∫
ME(z)∆φ(z)dλ(z) = 2π

∫
φ(z)dρE(z),

where dλ denotes the Lebesgue measure on C. The rest follows from density of C∞c (C) in Cc(C). �

Proposition 4.6. Let dµ be the spectral measure of LV , where V satisfies (1.1) and σess(LV ) = E.
Suppose that along a sequence xn →∞ the Riesz measure dρxn converge to ρE in the weak-∗ sense.
Then, either h(xn, z) converge to ME(z) or there exists a polar Borel set X such that µ(R\X) = 0.

Proof. Assume that h(xn, ·) do not converge to ME and consider a subsequence xnj such that
h(xnj , ·) → h in D′(C) with some limit h not equal to ME. By the upper envelope theorem [6,
Theorem 2.7.4.1] there is a polar set X1 such that for any z ∈ C \X1,

lim sup
j→∞

h(xnj , z) = h(z).
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The subharmonic function h has some Riesz measure ρ and by the same arguments as in the proof
of Theorem 1.6, ρxnj converges to ρ in the weak-∗ sense. Hence, by uniqueness of the limits our
assumption implies that ρ = ρE and, by Lemma 2.2 applied to h and ME,

h(z) = h(z∗) +
∫

log
∣∣∣∣1−

z − z∗
t− z∗

∣∣∣∣dρE(t) = d+ME(z)

where d = h(z∗)−ME(z∗). Recall thatME has a unique subharmonic extension to C which vanishes
q.e. on E. Therefore, there is a polar set X2 such that h(z) = d for z ∈ E \ X2. Moreover, since
ME ≤ h on Ω we see that d ≥ 0, and since h is not equal to ME, d > 0. In particular,

lim sup
j→∞

h(xnj , z) = d > 0, ∀z ∈ E \ (X1 ∪X2).

However, by Schnol’s theorem [74], for µ-a.e. z ∈ E, the Dirichlet solution decays at most polyno-
mially and, in particular,

lim sup
j→∞

h(xnj , z) ≤ 0.

Thus µ(E \ (X1 ∪X2)) = 0, which implies the claim with X = X1 ∪X2. �

In particular, Theorem 1.7 is now proved.

Proof of Theorem 1.8. By Schnol’s theorem [74] for µ-a.e. z ∈ E
lim sup
x→∞

h(x, z) ≤ 0. (4.9)

Hence, by assumption, (4.9) holds ωΩ(·, z0)-a.e.. Therefore, V is regular by Theorem 1.5. �

5. Applications

Proof of Theorem 1.12. (a) Denoting E = σess(LV ), it follows from E ⊂ [0,∞) thatME is a positive
harmonic function on C \ [0,∞). Since the Martin function for the domain C \ [0,∞) is Re

√−z,
it follows from Lemma 2.7 that ME(z) ≥ Re

√−z. Comparing this with the asymptotic expansion
(1.3) as z → −∞ shows that aE ≥ 0 so, by (1.5), lim infx→∞ 1

x

∫ x
0 V (t)dt ≥ 0.

(b) As in (a), aE ≥ 0. By (1.5) and lim infx→∞ 1
x

∫ x
0 V (t)dt ≤ 0, this implies that aE = 0.

Moreover, ME(z) − Re
√−z = o(

√
|z|−1) defines a positive harmonic function in C \ [0,∞) so,

by Lemma 2.7, ME(z) = Re
√−z . If E was a proper subset of [0,∞), since E is closed, there

would exist a gap (a, b) ⊂ [0,∞) \ E, and on this gap ME would be strictly positive, contradicting
ME(z) = Re

√−z.
(c) Again by aE ≥ 0 and (1.5), lim supx→∞ 1

x

∫ x
0 V (t)dt ≤ 0 implies that V is regular. �

We now turn to the construction of a potential which is regular for E = [0,∞) but not decaying,
even in the Cesàro sense. The potential will be constructed piecewise, so we begin by considering
a 2δ-periodic potential defined by

Wδ(x) =
{

1 x ∈ [0, δ)
−1 x ∈ [δ, 2δ)

Let us compute the discriminant ∆δ(z) and the smallest eigenvalue for the periodic problem,
λδ = min{λ ∈ R | ∆δ(λ) = 2}.

Lemma 5.1. limδ↓0 λδ = 0.
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Proof. Since |Wδ| ≤ 1 and λδ is the minimum of the periodic spectrum, by standard variational
principles, λδ ∈ [−1, 1] for all δ > 0. The transfer matrix corresponding toWδ at energy λ ∈ (−1, 1)
is

Tδ(λ) =
(

cosh(δ
√

1− λ) sinh(δ
√

1−λ)√
1−λ√

1− λ sinh(δ
√

1− λ) cosh(δ
√

1− λ)

)(
cos(δ

√
1 + λ) sin(δ

√
1+λ)√

1+λ
−
√

1 + λ sin(δ
√

1 + λ) cos(δ
√

1 + λ)

)

From this it is elementary to obtain the asymptotic behavior for the discriminant, ∆δ(λ) = trTδ(λ),
in the form

∆δ(λ) = 2− 4λδ2 +O(δ3), δ ↓ 0, (5.1)
uniformly in λ ∈ (−1, 0) (and then, by continuity, for λ ∈ [−1, 0]). From this, it follows that for
any t < 0, there exists δ0 > 0 such that δ ∈ (0, δ0) and λ ∈ [−1, t) implies ∆δ(λ) > 2 and therefore
λδ ≥ t. It follows that lim infδ↓0 λδ ≥ 0.

Meanwhile, ∆δ(0) = 2 cosh δ cos δ = 2− δ4/3 + o(δ4) as δ → 0 implies that lim supδ↓0 λδ ≤ 0. �

Proof of Example 1.13. Consider the Dirichlet solution u(x, t) corresponding to the given potential
at some t < 0. There exists n0 such that for all n ≥ n0, λ1/(2n) > t. At energies below the periodic
spectrum, transfer matrices have strictly positive entries; applying this on intervals [n, n + 1] and
since products of matrices with positive entries have positive entries, we conclude that u(x, t) has at
most one zero with x > n0−1. Since zeros of an eigensolution are isolated, it follows that u(·, t) has
finitely many zeros, so by Sturm oscillation theory, min σess(LV ) ≥ t. Since this holds for arbitrary
t < 0, we conclude min σess(LV ) ≥ 0.

Conversely, since V obeys limx→∞ 1
x

∫ x
0 V (t)dt = 0, the statement is completed by Theorem 1.12.

�
Proof of Example 1.11. For x ∈ [xn, xn+1] we have 1

x

∫ x
0 V (t)dt ≤

∫
W (t)dtn+1

xn
. Since the condition

on xn implies that xn
n →∞ we see that limx→∞ 1

x

∫ x
0 V (t)dt = 0. Since V ≥ 0, we have σess(LV ) ⊂

σ(LV ) ⊂ [0,∞), so by Theorem 1.12, V is regular and σess(LV ) = [0,∞).
Let HW be the whole-line operator with the potential W (x). Since W ≥ 0, we have σ(HW ) ⊂

[0,∞). Hence, we conclude that min σ(H−W ) < 0, for otherwise [24, Corollary 1] would imply that
W ≡ 0. Now by [45, Theorem 7.1] it follows that σess(H−V ) = σ(H−W ) (where H−V is the full line
operator with potential V extended to R− by V ≡ 0). Since σess(H−V ) = σess(L0)∪σess(L−V ) this
shows that min σess(L−V ) < 0. �
Proof of Theorem 1.16. The Lyapunov exponent γ is harmonic in C+ ∪C− and subharmonic in C.
By (1.11) for a.e. η ∈ S

lim
x→∞

1
x

log|uη(x, z)| = γ(z)

converges pointwise in C+ ∪ C−; by the weak identity principle for subharmonic functions and
precompactness, convergence to γ is also in D′(C). By Schnol’s theorem, for µη-a.e. z,

lim sup
x→∞

1
x

log|uη(x, z)| ≤ 0. (5.2)

Fix a sequence xn → ∞. By the upper envelope theorem [6, Theorem 2.7.4.1] there is a polar set
Xη such that for any z ∈ C \Xη,

lim sup
n→∞

1
xn

log|uη(xn, z)| = γ(z).

On Q, γ > 0. Hence, since (5.2) holds for µη-a.e. z, we have µη(Q \Xη) = 0. �
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6. Conformal maps

In view of Corollary 1.10 and the subsequent discussion, it is of great interest if the harmonic
measure of the domain C\E is absolutely continuous with respect to the Lebesgue measure χE(x)dx.
Let z0 < minE and GE(z, z0) be the Green function of C\E with pole at z0 and Πz0 the associated
comb domain, defined by the upper semicontinuous function s. We say that Πz0 satisfies the sector
condition if

Sz0(x) = sup
y∈(0,π)

sz0(y)
|x− y|

is finite for Lebesgue-a.e. x ∈ (0, π). Then, ωE(·, z0) is absolutely continuous with respect to the
Lebesgue measure if and only if Πz0 satisfies the sector condition.

The proceeding discussion holds for general semibounded sets E and does not assume that E is
an Akhiezer-Levin set. Let M be the Martin function with pole at ∞, normalized at some internal
point z∗, ρ its Riesz measure and Π and Θ the corresponding comb and comb mapping. There is
a similar characterization for absolute continuity of ρ. Let s be the upper semicontinuous function
defining Π. Then ρ is absolutely continuous with respect to χE(x)dx if and only if the domain
contains a Stolz angle at a.e. point at the base of the comb, i.e.

S(x) = lim sup
y→x

s(y)
|x− y| (6.1)

is finite for Lebesgue-a.e. x ∈ (0, b).
Under various conditions on the set E, it is known that the conformal map iΘ′ has a product

representation. We now provide a general proof which does not assume Dirichlet-regularity or any
other additional assumptions.

Lemma 6.1. Let E be a closed non-polar set of the form (1.4). For each j there exists cj ∈ [aj , bj ]
such that M is strictly increasing on (aj , cj) and strictly decreasing on (cj , bj), and Θ′(z) is given
on z ∈ C \ [b0,∞) by

iΘ′(z) = C√
b0 − z

e

∫
[b0,∞)\E

ξ(x) 1+xz
x−z

dx
1+x2 (6.2)

where ξ(x) = 1/2 for x ∈ (aj , cj), ξ(x) = −1/2 for x ∈ (cj , bj), ξ(x) = 0 for x /∈ [b0,∞) \ E, and
C > 0 is a normalization constant.

Proof. For finite-gap sets, this is a reformulation of the Schwarz–Christoffel mapping. If E has
infinitely many gaps, we consider them labelled by j ∈ N in an arbitrary way and denote En =
[b0,∞) \ ∪nj=1(aj , bj). Denote by Mn the Martin functions at ∞ corresponding to the sets En,
normalized by Mn(z∗) = 1 for some fixed z∗ < b0. Since the functions Mn are all positive harmonic
on C \ [b0,∞), for any R > |b0|, by Harnack’s principle they are uniformly bounded on the line
segments parametrized by −R+ it, t+ iR, t− iR, with t ∈ [−R,R]. SinceMn(x+ iy) are increasing
in y > 0 and symmetric, it follows that Mn are uniformly bounded above on the boundary of
(−R,R)× (−R,R) for any R large enough. Since they are also nonnegative, they are a precompact
sequence of subharmonic functions on C. By the upper envelope theorem, for any subsequential
limit h = limk→∞Mnk , quasi-everywhere on E, h(z) = limk→∞Mnk(z) = 0, so by Theorem 2.1, h
is Martin function for the domain C \ E with h(z∗) = 1. It follows that Mn converge to h in D′(C).

It follows that Θn converge to Θ since their real parts converge and their imaginary parts
are zero on (−∞, b0). In particular, the Herglotz functions iΘ′n converge to ciΘ′ uniformly on
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compact subsets of C+, so by interpreting this convergence in terms of their exponential Herglotz
representations,

lim
n→∞

∫

R
g(x)ξn(x) dx

1 + x2 =
∫

R
g(x)ξ(x) dx

1 + x2 , ∀g ∈ C(R ∪ {∞})

where ξ is determined by limy↓0 argΘ′(x+iy) = πξ(x) Lebesgue-a.e. x ∈ R. By using test functions
g supported in (aj , bj), it follows that for each j, the critical points cj,n must converge to a point cj ∈
[aj , bj ]. Then ξn converge pointwise to the function ξ̃ which is 1 on intervals (aj , cj), −1 on (cj , bj),
and 0 on [b0,∞), so by dominated convergence with dominating function ‖g‖∞ 1

1+x2χ[b0,∞)\E,

lim
n→∞

∫

R
g(x)ξn(x) dx

1 + x2 =
∫

R
g(x)ξ̃(x) dx

1 + x2 , ∀g ∈ C(R ∪ {∞}).

Of course, this implies ξ = ξ̃ which implies (6.2). Finally, by separating the contribution from the
gap (aj , bj) from the remainder of the integral, (6.2) can be extended into the gap (aj , bj) to show
that iΘ′ > 0 on (aj , cj) and iΘ′ < 0 on (cj , bj). It follows that M ′ > 0 on (aj , cj) and M ′ < 0 on
(cj , bj), so our construction of cj as limits of cj,n satisfies the property in the lemma. �

As the final topic of this section, we describe a class of Akhiezer–Levin sets for which it can be
seen by purely complex theoretic arguments that the Martin function has the two-term expansion
(1.3). While this is not as general as Theorem 1.1, within its scope of applicability, it provides a
formula for aE in terms of critical points of the Martin function.
Lemma 6.2. Let E ⊂ R be of the form (1.4). If

∑N
j=1(bj − aj) <∞, then E is an Akhiezer–Levin

set, the Martin function obeys the two-term expansion (1.3), and

aE = b0 +
N∑

j=1
(aj + bj − 2cj). (6.3)

Proof. Finite gap length can be restated as
∫
χ[b0,∞)\E(x)dx <∞ and it implies that the exponent

in (6.2) can be split into two separately integrable integrands, of which one is z-independent, to
give

iΘ′E(z) = CE√
b0 − z

e

∫
[b0,∞)\E

ξ(x) 1
x−z dx

.

For any δ > 0, using finite gap length and dominated convergence,∫

[b0,∞)\E
ξ(x) 1

x− zdx = −1
z

∫

[b0,∞)\E
ξ(x)dx+ o(|z|−1),

as z →∞, arg z ∈ [δ, 2π − δ]. Evaluating the integral
∫

[b0,∞)\E ξ(x)dx and substituting into Θ′(z),

iΘ′E(z) = CE


 1√−z + 1

2(b0 +
N∑

j=1
(aj + bj − 2cj))

1
√−z3 + o(|z|−3/2)




and integrating along rays shows that, as z →∞ with arg z ∈ [δ, 2π − δ],

iΘE(z) = CE


−2

√
−z + (b0 +

N∑

j=1
(aj + bj − 2cj))

1√−z + o(|z|−1/2)


 .

Taking imaginary parts gives a two-term expansion of ME, which matches (1.3) with CE = 1
2 .

Reading off the second term gives (6.3). �
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ASYMPTOTICS FOR CHRISTOFFEL FUNCTIONS

ASSOCIATED TO CONTINUUM SCHRÖDINGER OPERATORS

By

BENJAMIN EICHINGER∗

Abstract. We prove asymptotics of the Christoffel function, λL(ξ), of a
continuum Schrödinger operator for points in the interior of the essential spectrum
under some mild conditions on the spectral measure. It is shown that LλL(ξ)
has a limit and that this limit is given by the Radon–Nikodym derivative of the
spectral measure with respect to the Martin measure. Combining this with a
recently developed local criterion for universality limits at scale λL(ξ), we compute
universality limits for continuum Schrödinger operators at scale L and obtain clock
spacing of the eigenvalues of the finite range truncations.

1 Introduction

The goal of this paper is to derive asymptotics for Christoffel functions of con-

tinuum Schrödinger operators. It is natural for this topic to work in the half-line

setting, so our Schrödinger operators are unbounded self-adjoint operators, HV , on

L2((0,∞)), corresponding formally to the differential expression

− d2

dx2
+ V.

We always assume that the potential V is real-valued and uniformly locally inte-

grable, i.e.,

(1.1) sup
x≥0

∫ x+1

x

|V(t)|dt <∞.

In particular, 0 is a regular endpoint and +∞ is a limit point endpoint in the sense

of Weyl. We set a Neumann boundary condition at 0, so the domain of HV is

D(HV) =

{
f ∈ L2((0,∞)) |

f, f ′ ∈ ACloc([0,∞)),−f ′′ + Vf ∈ L2((0,∞)), f ′(0) = 0

}
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JOURNAL D’ANALYSE MATHÉMATIQUE, Vol. TBD (2023)

DOI 10.1007/s11854-023-0319-7

1



2 B. EICHINGER

where ACloc([0,∞)) denotes the set of functions which are absolutely continuous

on all bounded intervals.

For any z ∈ C the Neumann solution, v(x, z), is the solution of the initial value

problem

−∂2
xv(x, z) + V(x)v(x, z) = zv(x, z), v(0, z) = 1, ∂xv(0, z) = 0.(1.2)

The Christoffel function is defined by

λL(z) =

(∫ L

0

|v(x, z)|2dx

)−1

, z ∈ C,L ≥ 0.(1.3)

As a function of L, it measures the growth rate of eigensolutions, which is known to

be an important quantity in spectral theory. For instance, growth rates of eigenso-

lutions are used in subordinacy theory developed by Gilbert and Pearson [20], or by

Last and Simon [24], to describe the absolutely continuous spectrum of HV . In our

main result, Theorem 1.1 below, we will prove asymptotics for λL(ξ) as L → ∞
and as a consequence obtain universality limits for Christoffel–Darboux kernels

of continuum Schrödinger operators and clock spacing of the eigenvalues of fi-

nite range truncations of HV . Asymptotics of λL as well as universality limits

and zero spacing of eigenvalues has received much attention in recent years; see

[4, 6, 9, 13, 22, 25, 27, 26, 31, 28, 32] for a partial list of references.

In order to formulate Theorem 1.1 we need to recall the construction of a

maximal spectral measure using Weyl theory and the concept of the Martin function

from potential theory.

Since ∞ is a limit point endpoint, there is (up to a scalar multiple unique)

ψ(x, z) satisfying

−∂2
xψ(x, z) + V(x)ψ(x, z) = zψ(x, z)(1.4)

and ψ ∈ L2((0,∞)), which is called the Weyl solution at ∞. On the upper

half-plane C+, the Weyl m-function is defined by

m(z) = − ψ(0, z)

∂xψ(0, z)
.(1.5)

The function m is a Herglotz function, i.e., it maps C+ analytically into itself. It

is a general fact that Herglotz functions admit an integral representation. That is,

there exist a ≥ 0, b ∈ R and a positive Borel measure µ with

∫
dµ(ξ)

1 + ξ2
<∞
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such that

m(z) = az + b +

∫

R

( 1

ξ − z
− ξ

1 + ξ2

)
dµ(ξ).

From the perspective of operator theory, the measure µ represents a maximal

spectral measure of HV . Let dµ = fµdx + dµs be the Lebesgue decomposition of µ

with respect to the Lebesgue measure.

In [12] a theory of Stahl–Totik regularity was developed for continuum

Schrödinger operators. To introduce this theory we will use some standard ob-

jects from potential theory which can be found in [34, 2]. Let E = σess(HV) and

� = C\E. For potentials V satisfying (1.1), E is bounded from below but not from

above. Therefore, one can show that the cone of positive harmonic functions in �

which vanish quasi-everywhere (q.e.) on E is one-dimensional. Elements of this

cone are called Martin functions of � at ∞. For an excellent survey on the Martin

theory for Denjoy domains we refer to [17]. In [12] it is shown that for any such

Martin function

lim
z→−∞

M(z)√−z
> 0.

Existence of the limit follows by standard arguments for positive harmonic func-

tions. The important point of the above statement is that the limit is positive. It

allows to normalize at ∞ and we obtain a unique Martin function, ME(z), such that

the limit above is equal to 1. Due to [12, Theorem 1.1] there exists aE ∈ R such

that the Martin function has the asymptotic behavior

ME(z) = Re
(√−z +

aE

2
√−z

)
+ o
( 1√|z|

)
,

as z → ∞, arg z ∈ [δ, 2π− δ], for any δ > 0. This higher asymptotic expansion is

then used to characterize regularity in the sense of Stahl and Totik. A potential V

satisfying (1.1) is called Stahl–Totik regular if

lim
L→∞

1

L

∫ L

0

V(s)ds = aE.(1.6)

The Martin function can be extended to a subharmonic function on C and thus its

distributional Laplacian defines a positive measure. We call

ρE =
1

2π
1ME

the Martin measure of the domain C\E. It plays the role of the equilibrium measure

from the theory of orthogonal polynomials for compactly supported measures.

Again we write its Lebesgue decomposition dρE(ξ) = fE(ξ)dξ + dρE,s(ξ).

Assuming regularity, we are able to characterize the asymptotic behavior of λL

at interior points of σess(HV).
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Theorem 1.1. Let V be a Stahl–Totik regular potential such that E = σess(HV)

is Dirichlet regular and µ the corresponding spectral measure. Let I ⊂ int(E) be

a closed interval such that µ is absolutely continuous in a neighborhood of I and

its density fµ is positive and continuous at every point of I. Then we have

lim
L→∞ LλL(ξ) =

fµ(ξ)

fE(ξ)
,(1.7)

uniformly for ξ ∈ I.

Stahl–Totik regularity is a quite general property. For sufficiently nice sets E,

regularity follows from

fµ > 0 Lebesgue a.e. on E.(1.8)

To be precise, by the Widom criterion [12, Theorem 1.8] V is regular if the

harmonic measure of C \ E is absolutely continuous with respect to µ. Thus,

if E is such that the harmonic measure is mutually absolutely continuous with the

Lebesgue measure restricted to E, (1.8) implies Stahl–Totik regularity. By [42],

mutual absolute continuity of the harmonic and the Lebesgue measure holds for

regular Parreau–Widom sets. These sets are well studied in inverse spectral theory

[41, 7, 14]. Every set which is homogeneous in the sense of Carleson, i.e., sets E
for which there exists τ > 0 so that

|E ∩ [ξ0 − ε, ξ0 + ε]| ≥ τε, ∀ξ0 ∈ E,∀ε ∈ (0, 1],

is a regular Parreau–Widom set [23]. In particular, for finite gap sets or for spectra

of Schrödinger operators with periodic potentials (1.8) implies that V is Stahl–Totik

regular.

Christoffel functions are well studied in the setting of orthogonal polynomials.

In this case, the Christoffel function is defined similar to (1.3), but the Neumann

solution at L is substituted by the orthonormal polynomial of degree n. For

compactly supported measures, typical results show that under certain assumptions

lim
n→∞ nλn(ξ) =

fµ(ξ)

fE(ξ)
,(1.9)

where λn(ξ) is the Christoffel function associated to the orthonormal polynomials

and fE(ξ) denotes the density of the equilibrium measure. A fundamental result of

Máté–Nevai–Totik [31] shows (1.9) for the case E = [−2, 2]. More precisely, it is

shown that (1.9) holds provided thatµ is Stahl–Totik regular on [−2, 2], fµ(ξ) > 0,

log fµ is integrable in a neighborhood of ξ, and ξ is a Lebesgue point of both the

measure µ and the Szegő function associated to fµ. This has been extended by

Totik to arbitrary compact sets by using the polynomial preimage method [43].
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Our approach is inspired by a method used by Simon and we obtain a full

analog for continuum Schrödinger operators of all results in [40]. Let us mention

that the assumptions in [40] or in Theorem 1.1 are stronger than the ones in

[31]. However, the conclusion is also stronger, since uniformity in (1.7) require

continuity of fµ, see also [44]. It is an interesting question if our method could also

be used to prove (1.7) under Lebesgue point and local Szegő conditions as used by

Máté–Nevai–Totik.

Limits of Christoffel functions for continuum Schrödinger operators were first

studied by Maltsev in [28]. At that time the notion of regularity for continuum

Schrödinger operators was not available and Maltsev proved (1.7) for potentials

V = V̊ + Ṽ , where V̊ is a periodic continuous potential, Ṽ is so that σess(V) = σess(V̊)

and Ṽ is Césaro decaying, i.e.,

lim
L→∞

1

L

∫ L

0

|Ṽ(x)|dx = 0.(1.10)

Thus, our result generalizes [28] in several directions. First of all, if E is the

spectrum of a continuum Schrödinger operator, then generically there is no periodic

potential so that the essential spectrum of the associated operator is E. Moreover,

even if E is the spectrum of a periodic Schrödinger operator, a regular potential

does not necessarily satisfy (1.10). A counterexample can be found even in the

simplest case E = [0,∞) with V̊ ≡ 0. It is shown in [12, Example 1.13] that the

potential defined piecewise by V(x) = (−1)⌊2n(x−n)⌋ on x ∈ [n−1, n) for integer n is

regular with σess(LV) = [0,∞), but (1.10) does not hold. On the other hand, since

periodic potentials are regular, it follows from (1.6) and (1.10) that the potentials

considered in [28] are Stahl–Totik regular.

We turn to applications of our main theorem. The Christoffel–Darboux kernel

is defined by

KL(z, w) =

∫ L

0

v(x, z)v(x, w)dx.

For ξ ∈ R, bulk universality limits are double scaling limits of the type

lim
L→∞

KL(ξ + z
τL(ξ)

, ξ + w
τL(ξ)

)

KL(ξ, ξ)
=

sin(ηπ(z −w))

ηπ(z −w)
.

Universality limits were often studied at explicit polynomial scales. Recent results

suggest that universality limits at such scales are a combination of two different

phenomena. One is universality at scale λL(ξ), studied in great generality in [13];

the other is the explicit asymptotics of λL(ξ) now provided by Theorem 1.1. Thus,

we can combine Theorem 1.1 with the results from [13] to obtain universality

limits at scale L.
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Theorem 1.2. With the assumptions of Theorem 1.1 we have

lim
L→∞

KL(ξ + z
L
, ξ + w

L
)

KL(ξ, ξ)
=

sin(πfE(ξ)(z −w))

πfE(ξ)(z −w)
,(1.11)

uniformly for ξ ∈ I.

As a consequence of Theorem 1.2 we will obtain asymptotic equal eigenvalue

spacing of the eigenvalues of the finite range truncations. It is a common scheme

already observed by Wigner for random matrix ensembles that the global asymp-

totic distribution of the eigenvalues depends on the particular model, however the

local microscopic scale exhibits universal behavior.

For any L > 0, let νL denote the zero counting measure for ∂Lv(L, ·) divided

by L,

νL =
1

L

∑

ξ: ∂Lv(L,ξ)=0

δξ .

The measure νL is intimately related to the eigenvalues of the finite range truncation

of HV . Namely, if HL
V denotes the restriction of HV onto (0,L) with Neumann

boundary condition at L, then HL
V has purely discrete spectrum given by the zeros

of ∂Lv(L, ·).
The global distribution is given by the Martin measure ρE. That is, regularity

of V implies that νL has a weak-∗ limit and that this limit is given by ρE. However, it

follows from the Freud–Levin theorem [16, 25] that (1.11) implies equal eigenvalue

spacing at scale 1/L.

For L > 0 and ξ ∈ I, we denote by ξL
j (ξ) for j ∈ Z the zeros of ∂Lv(L, ·) counted

from ξ, i.e.,

· · · < ξL
−2(ξ) < ξL

−1(ξ) < ξ ≤ ξL
0 (ξ) < ξL

1 (ξ) < · · ·

with no zeros of ∂Lv(L, ·) between ξL
j and ξL

j+1.

Theorem 1.3. With the assumptions of Theorem 1.1 we have that the zeros

of ∂Lv(L, ·) admit uniform clock behavior on I, i.e., for fixed j ∈ Z

lim
L→∞ LfE(ξ)(ξL

j+1(ξ) − ξL
j (ξ)) = 1(1.12)

uniformly for ξ ∈ I.

The organization of the paper is as follows. In Section 2 we recall concepts

from the theory of Stahl–Totik regularity for continuum Schrödinger operators and

prove that the additional assumption of Dirichlet regularity of E leads to uniformity

in the asymptotic estimates. This is crucial to control the exponential growth of the
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Neumann solution close to E. In Section 3 we recall aspects of the spectral theory

for continuum Schrödinger operators and show how this can be viewed as a special

case of the general theory of canonical systems. In particular, we show that the

Christoffel function can also be defined through an extremal problem. In Section 4

we prove asymptotics of the Christoffel function for finite gap potentials. Section 5

is devoted to the proofs of the main theorems. We also provide an appendix in

which we recall some parts from the theory of canonical systems.

Acknowledgements. I would like to thank Milivoje Lukić and Brian Simanek

for helpful discussions.

2 Stahl–Totik regularity

From the discrete setting it is known that in order to show (1.9), in addition

to local properties of the measure, some additional global assumption is needed

[43]. A common sufficient assumption is to assume that the measure is regular in

the sense of Stahl and Totik. In [12] a corresponding theory was developed for

continuum Schrödinger operators with uniformly locally integrable potential. In

the following, we show that an additional uniformity is obtained in the estimates

under the additional assumption that the underlying spectrum is regular for the

Dirichlet problem.

For z ∈ C the Dirichlet solution, u(x, z), is the solution of (1.2) with initial

condition u(0, z) = 0, ∂xu(0, z) = 1. Stahl–Totik regularity as defined in the in-

troduction was linked to exponential growth of the Dirichlet solutions. However,

the same proofs also characterize the exponential growth of the Neumann solu-

tion. By D′(C) we denote the space of distributions and recall that subharmonic

functions can be viewed as representatives of real-valued distributions with non-

negative Laplacian.

Lemma 2.1. Let V obey (1.1) and v(x, z) denote the Neumann solution. Then:

(a) For any x > 0, the function log|v(x, z)| is a subharmonic function on C.

(b) The family of functions {log|v(x, z)|}x≥1 is precompact in D′(C).

Moreover, if V is Stahl–Totik regular, then:

(i) The functions log|v(x, z)| converge as x → ∞ to ME(z) in the distributional

sense as well as uniformly on compact subsets of C+.

(ii) For all z ∈ C, lim supx→∞
1
x

log |v(x, z)| ≤ ME(z).
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Proof. (a) By general principles, for any x > 0, v(x, z) is an entire function

of z [33], so log|v(x, z)| is subharmonic.

(b) Is analogous to the proof of [12, Theorem 4.3]: it is a consequence of locally

uniform upper bounds which follow from general principles, and a pointwise lower

bound which follows from boundedness of the diagonal Green function for the

Schrödinger operator with Neumann boundary conditions.

(i) If V is Stahl–Totik regular and u(x, z) denotes the Dirichlet solution, then by

[12, Theorem 1.5] for any z ∈ C \ R,

lim
x→∞

1

x
log|u(x, z)| = ME(z).

In words, u(x, z) grows exponentially with rate ME(z) > 0. Moreover, the Weyl

solution ψ(x, z) decays, limx→∞ ψ(x, z) = 0. The Neumann solution v(x, z) is a

linear combination of u(x, z) and ψ(x, z) and it is not a multiple of ψ(x, z) (since z

is not real, it is not an eigenvalue of the self-adjoint operator). Thus, v(x, z) also

obeys

lim
x→∞

1

x
log|v(x, z)| = ME(z), ∀z ∈ C \ R.

This implies that ME is the only possible subsequential limit of 1
x

log|v(x, z)|
in D′(C). By precompactness of the family, this implies convergence to ME in

the topology of D′(C).

(ii) Follows from convergence in D′ together with the principle of descents for

subharmonic functions. �
We will show that for Dirichlet regular sets (ii) holds uniformly on compact

subsets of C. This will follow from showing that (ii) holds not only pointwise but

in the following stronger sense: Given a sequence (zn)n∈N such that

lim
n→∞ zn = z∞ ∈ C

and increasing sequence (xn)n∈N, limn→∞ xn = ∞, then

lim sup
n→∞

1

xn

log |u(xn, zn)| ≤ ME(z∞).

If then, in addition, ME is continuous (or merely lower semicontinuous), this

implies that (ii) holds uniformly on compact subsets of C. Since for Dirichlet

regular sets E, ME is continuous [12, Theorem 2.1], this will prove the above claim.

We will need a version of principle of descents for Green potentials. Let� ⊂ C
be a Greenian domain and denote its Green function by G�(z, w), cf. [2, Section 4].

Let ν be a measure supported in � and define the Green potential of ν by

8G
ν (z) =

∫
G�(z, t)dν(t)
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provided that there exists z0 ∈ � such that8G
ν (z0) <∞. It defines a superharmonic

function in �. By [2, Lemma 4.2.2] this holds in particular, if ν is supported on a

compact subset of �.

Lemma 2.2. Let � be a Greenian domain and let νn, ν∞ be finite measures

with support in a common compact subset of� and limn→∞ νn = ν∞ in the weak-∗
sense. Let zn ∈ � with limn→∞ zn = z∞ ∈ �. Then

lim inf
n→∞ 8G

νn
(zn) ≥ 8G

ν∞(z∞).

Proof. By assumption there exists a compact set K ⊂ � such that

supp νn ∪ supp ν∞ ∪ {zn}n∈N ∪ {z∞} ⊂ K.

For M > 0 define

GM
� (z, t) = min{M,G�(z, t)}.

The claim will follow from uniform continuity of GM
� on K × K. By [2, The-

orem 4.1.9.] G�(z, t) is continuous on K × K in the extended sense (i.e., with

the value +∞ allowed). Thus it follows that GM
� (z, t) is continuous on K × K

and GM
� (z, t) ≤ M. We conclude that GM

� (z, t) is continuous in the standard sense

and since K is compact, uniform continuity follows. Since ν∞ is a finite mea-

sure and νn → ν∞ we have sup νn(K) < ∞. Now it follows from the monotone

convergence theorem that

8G
ν∞(z∞) = lim

M→∞

∫
GM
� (z∞, t)dν∞(t)

= lim
M→∞ lim

n→∞

∫
GM
� (zn, t)dνn(t)

≤ lim
M→∞ lim inf

n→∞

∫
G�(zn, t)dνn(t)

= lim inf
n→∞ 8G

νn
(zn). �

Following the proof of [5, Theorem 2.7.4.1] we obtain:

Theorem 2.3. Let (un)n∈N and u∞ be superharmonic functions in C such that

limn→∞ un = u∞ in D′(C). Let zn ∈ C with limn→∞ zn = z∞ ∈ C. Then

lim inf
n→∞ un(zn) ≥ u∞(z∞).

Proof. Fix R > 0 such that zn, z∞ ∈ BR(0). By [5, Theorem 2.7.1.1] the un

are uniformly bounded from below on B2R(0) and thus we can assume that the un

and u∞ are non-negative there.
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For a non-negative superharmonic function u in a domain � and E ⊂ �

let R̂E
u denote the regularized reduced function [2, Section 5.3].1 View un, u as

non-negative superharmonic functions in B2R(0). Set K = BR(0) and

vn = R̂K
un
, v = R̂K

u .

Since K ⊂ B2R(0) is compact we see that vn and v are Green potentials [2,

Theorem 5.3.5], i.e., vn = 8G
νn

, v = 8G
ν for some measures νn, ν and the Green

function of the domain B2R(0). By [2, Theorem 5.3.4] vn, v are harmonic outside

of K and it follows that νn, ν are supported on K. Due to [5, Theorem 2.7.2.2],

vn → v in D′(B2R(0)) and thus since by [2, Theorem 4.3.8] νn, ν are the Riesz

measures of vn and v we conclude that νn → ν in C(K)∗. Therefore, we obtain

from Lemma 2.2 that

lim inf
n→∞ 8G

νn
(zn) ≥ 8G

ν (z).

Since vn = un and v = u on BR(0) the claim follows. �
We immediately get the following:

Theorem 2.4. If V is Stahl–Totik regular then for any zn → z and xn → ∞
we have

lim sup
n→∞

1

xn

log |v(xn, zn)| ≤ ME(z).(2.1)

In particular, if E is Dirichlet regular, uniformly on compact subsets of C we have

lim sup
x→∞

1

x
log |v(x, z)| ≤ ME(z).

Proof. As in the proof of Lemma 2.1 regularity implies that for any xn → ∞
the family of subharmonic functions ( 1

xn
log |v(xn, zn)|) converges to ME(z) in D′(C)

and is bounded from above on compact subsets of C. Thus, the first claim follows

from Theorem 2.3 applied to (− 1
xn

log |v(xn, zn)|). If E is Dirichlet regular, ME

is continuous on C. The second statement then follows from (2.1) and lower

semi-continuity of ME. �
We need to control the Neumann solution for large real energies. We only need

bounds for real spectral parameter ξ, but ξ can be negative. We will always assume

that Im
√

z ≥ 0 for z ∈ C. The Neumann and Dirichlet solutions for V = 0 are the

functions

c(x, z) = cos(
√

zx), s(x, z) =





sin(
√

zx)√
z
, z 6= 0,

x, z = 0.

1In [5, Theorem 2.7.2.1] the regularized reduction was introduced in a different way, but it follows
from its characteristic properties that these two notions, up to switching from super- to subharmonic
functions, coincide.
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By standard arguments, for general V ∈ L1([0, x]), the initial value problem (1.2) is

rewritten as integral equations, and by Volterra-type arguments, convergent series

representations are then found for the fundamental solutions. With the notation

1n(x) = {t ∈ Rn | x ≥ t1 ≥ t2 ≥ · · · ≥ tn ≥ 0}, the series representation for the

Neumann solution is

(2.2)

v(x, z) = c(x, z)

+

∞∑

n=1

∫

1n(x)

s(x − t1, z)

(n−1∏

j=1

V(tj)s(tj − tj+1, z)

)
V(tn)c(tn, z)dnt,

see [33] or [12, Section 3].

Lemma 2.5. Let x > 0. For ξ ≥ 1 we have

|v(x, ξ)| ≤ e

∫ x
0

|V(t)|dt√
ξ .(2.3)

For ξ < 1 we have

|v(x, ξ)| ≤ e(1+Im
√
ξ)x+

∫ x

0 |V(t)|dt.(2.4)

Proof. For ξ ≥ 1 we use the estimates |c(x, ξ)| ≤ 1 and |s(x, ξ)| ≤ √
ξ

−1
to

get from (2.2)

|v(x, ξ)| ≤ 1 +

∞∑

n=1

∫
1n(x)

∏n
j=1 |V(tj)|dnt
√
ξ

n = 1 +

∞∑

n=1

(∫ x

0 |V(t)|dt
)n

√
ξ

n
n!

= e

∫ x
0

|V(t)|dt√
ξ .

Similarly, for ξ < 1 we use |s(x, ξ)| = |∫ x

0 c(t, ξ)dt| ≤ xeIm
√
ξx ≤ e(1+Im

√
ξ)x and

|c(x, ξ)| ≤ eIm
√
ξx ≤ e(1+Im

√
ξ)x and get

|v(x, ξ)| ≤ e(1+Im
√
ξ)xe

∫ x

0 |V(t)|dt. �

Combining these estimates for large real energies and Theorem 2.4 on compact

subsets of C, we get a uniform growth estimate for the Neumann solutions for ξ ∈ R
which are close to E. To this end let us introduce for 0 < δ < 1 the extension

Eδ = {ξ ∈ R : dist(ξ,E) < δ} ∪ [1/ξ,∞).(2.5)

Having in mind that ∞ is a boundary point of� it is natural to also add a half-line.

Note that this makes Eδ a finite gap set, which will be crucial in Section 5.

Theorem 2.6. Let V be Stahl–Totik regular such that E = σess(V) is Dirichlet

regular. Then for any ε > 0 sufficiently small there exists 0 < δ < 1 and C > 0

such that for any ξ ∈ Eδ and x > 0 we have

|v(x, ξ)| ≤ Ceεx.
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Proof. Let

c1 = sup
x≥1

∫ x+1

x

|V(t)|dt

and fix 0 < ε < 2c1. We have
∫ x

0 |V(t)|dt ≤ c1(x + 1) ≤ 2c1x for x ≥ 1.

Setting δ1 = ( ε
2c1

)2 we obtain the estimate for ξ ≥ 1/δ1 from (2.3).

Let K = [inf E − 1, 1/δ1]. Since ME is uniformly continuous on K and vanishes

on E, we find δ2 > 0 such that for ξ ∈ K with dist(ξ,E) ≤ δ2, ME(ξ) < ε
2
. Thus, by

Theorem 2.4 there exists L0 > 0 such that for x ≥ L0 and ξ ∈ K with dist(ξ,E) < δ2

1

x
log |v(x, ξ)| ≤ ε.

For x ≤ L0 we use (2.4) to get a uniform bound for |v(x, ξ)|. The claim follows

with δ = min{δ1, δ2}. �

3 Christoffel–Darboux kernel, Christoffel function and
Fourier transform

In this section we recall aspects of the spectral theory of continuum Schrödinger

operators on the half-line. By relating it to the rich theory of canonical systems

developed by Krein and de Branges, we will characterize the Christoffel–Darboux

kernel as a reproducing kernel of a certain Hilbert space of entire functions. This

viewpoint will also give an expression of λL(z) in terms of an extremal problem.

The connection between canonical systems and continuum Schrödinger operators

has been extensively discussed by Remling in [35, 36].

For a given potential V : [0,∞) → R, V ∈ L1
loc, let HV be the associated

Schrödinger operator on the half-line,where we again assume a Neumann boundary

condition at 0 and that V is so that ∞ is a limit point endpoint. If we consider the

truncation to [0,L], then we assume in addition a Neumann boundary condition

at L

f ′(L) = 0

and denote the corresponding operator by HL
V .

Let us start by considering HL
V . It is well known that the spectrum is purely

discrete and simple. Let v(x, z) and u(x, z) denote the Neumann and Dirichlet

solution, respectively. Define the measure

µL =
∑

ξ:∂Lv(L,ξ)=0

δξ
‖v(·, ξ)‖L2

dx
((0,L))

,
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where δξ denotes the Dirac measure. Note that this is not the same measure as νL

defined in the introduction. The operator U : L2
dx((0,L)) → L2

dµL
(R)

(Uf )(z) =

∫ L

0

f (x)v(x, z)dx(3.1)

is unitary and

UHL
VU∗ = Sz,

where Sz denotes the operator of multiplication with the independent variable

in L2
dµL

(R). The adjoint of U is given by

(U∗F)(x) =

∫
v(x, ξ)F(ξ)dµL(ξ).

Although in the above discussion U(L2
dx((0,L))) was considered as L2

dµL
(R),

(3.1) allows to interpret for f ∈ L2
dx((0,L)), F(z) = (Uf )(z) as a function on C. This

leads to the theory of de Branges spaces. Define the transfer matrix

T(x, z) =

(
v(x, z) −u(x, z)

−∂xv(x, z) ∂xu(x, z)

)

and note that it solves the differential equation

j∂xT(x, z) =

(
−z

(
1 0

0 0

)
+

(
V(x) 0

0 −1

))
T(x, z), j =

(
0 −1

1 0

)
.(3.2)

Such a system is called a canonical system with coefficient functions A(x) = ( 1 0
0 0 )

and B(x) = ( V(x) 0
0 −1

); see Appendix A. It follows from (A.3) that

EL(z) = v(L, z) + i∂Lv(L, z)

is a Hermite–Biehler function. This means that E is entire, has no zeros in C+ and

satisfies |E(z)| ≥ |E(z)| there. To a Hermite–Biehler function we can associate a

Hilbert space of entire functions B(E) with scalar product

〈F,G〉B(E) =
1

π

∫
F(x)G(x)

dx

|E(x)|2 ;(3.3)

see Appendix A.

Theorem 3.1 ([35, Theorem 3.1]). The Hilbert space B(EL) and L2
dµL

(R) are

identical. More precisely, if F ∈ B(EL), then the restriction of F to R belongs

to L2
dµL

(R) and F 7→ F|R is unitary.
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For an entire function F we denote F#(z) = F(z). The Hilbert spaces B(EL) are

reproducing kernel Hilbert spaces and the kernel is given by

KL(z, w) =
EL(w)EL(z) − E#

L(w)E#
L(z)

2i(w− z)
=
v(L, w)v ′(L, z) − v ′(L, w)v(L, z)

w− z
.(3.4)

On the other hand, using (A.4), it follows that

KL(z, w) =

∫ L

0

v(x, z)v(x, w)dx.(3.5)

Using the terminology common in the orthognal polynomials literature, we

call KL(z, w) the Christoffel–Darboux kernel. In the setting of orthogonal polyno-

mials, the equivalence of (3.4) and (3.5) is called the Christoffel–Darboux formula.

Evaluating (3.4) on the diagonal for ξ ∈ R gives

KL(ξ, ξ) = (∂Lv)(L, ξ)(∂ξv)(L, ξ) − v(L, ξ)(∂ξ∂Lv)(L, ξ).(3.6)

It is a remarkable property that as sets B(EL) do not depend on the potential;

see [35, Theorem 4.1]. That is, for any V ∈ L1([0,L]),

B(EL) = SL :=

{∫ L

0

f (x) cos(
√

zx)dx : f ∈ L2((0,L))

}
(3.7)

where this is understood as set equality. Of course the topology depends on the

potential through (3.3). Recall that c(x, z) = cos(
√

zx) is the Neumann solution

for V = 0. Using the variable k2 = z it will be convenient to also consider the set

SL =

{∫ L

0

f (x) cos(kx)dx : f ∈ L2((0,L))

}
.(3.8)

It is mentioned in [29, page 101] and it follows from the Paley–Wiener theorem

that

SL = {g ∈ L2
dk(R) : g is entire, even and of exponential type at most L}.

From (3.7) it follows directly that B(EL1
) ⊂ B(EL2

) for L1 ≤ L2 and in fact this

inclusion is isometric. But even more is true:

Theorem 3.2 ([35, Theorem 3.2]). Suppose 0 < L1 ≤ L2. Then B(EL1
) is

isometrically contained in B(EL2
). Moreover, if µ denotes the spectral measure

for the half-line problem, then for every L > 0, B(EL) is isometrically contained

in L2
dµ(R) in the sense that for F ∈ B(EL), F|R ∈ L2

dµ and ‖F‖B(EL) = ‖F|R‖L2
dµ

.
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In the following, we will drop the restriction map and interpret F either as a

function in L2
dµ or as an entire function in B(EL) depending on the context. This

shouldn’t lead to any confusion.

Using that B(EL) is isometrically contained in L2
dµ(R) and the equality (3.7) we

can define the Christoffel function:

Definition 3.3. For L > 0 and z ∈ C we define the Christoffel function

associated to V by

λL(z) = inf{‖F‖2
L2

dµ
: F ∈ SL,F(z) = 1}.

Since B(EL) is a reproducing kernel Hilbert space it follows from the Cauchy–

Schwarz inequality that the infimum is in fact a minimum and that the extremizer

is given by

QL(z, z0) =
KL(z, z0)

KL(z0, z0)
.

Note that KL(z0, z0) = ‖KL(·, z0)‖2
B(EL) = ‖KL(·, z0)‖2

L2
dµ

. In particular,

λL(z) =
1

KL(z, z)
.

Combining this with (3.5) shows that this definition of λL(z) coincides with the one

given in (1.3).

4 Asymptotics for finite gap potentials

The goal of this section is to show (1.7) for so-called finite gap potentials. We will

need some preliminary observations:

4.1 The isospectral torus. In this section we assume that E is a finite gap

set of the form

E = [b0,∞) \
g⋃

j=1

(aj, bj),

where b0 < aj < bj < aj+1 < bj+1, for 0 < j < g − 1. In this setting it is more

natural to consider Schrödinger operators on R. Let V be a continuous and bounded

potential on R and HV acting on its natural domain in L2(R). Clearly HV± with

potential V+ = V|[0,∞) and V− : [0,∞) → R defined by V−(x) := V(−x) have ∞
as a limit point endpoint and thus we can associate Weyl m-functions m± by (1.5).
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Definition 4.1. We say that V is reflectionless on A ⊂ R if for almost ev-

ery ξ ∈ A

m+(ξ + i0) = −m−(ξ − i0).

For a given finite gap set E we define the isospectral torus by

T(E) = {V ∈ Cb(R) : σ(HV) = E and V is reflectionless on E}.

This class has been considered for essentially more general sets [19, 41].

4.2 Abelian integrals. For finite gap potentials many important spectral

theoretical objects can be given explicitly in terms of the Abelian integrals on the as-

sociated hyperelliptic Riemann surfaceRE associated to
√

(z−b0)
∏

(z−aj)(z−bj),

i.e.,

RE =

{
(z, w) ∈ C2 : w2 = (z − b0)

g∏

j=1

(z − aj)(z − bj)

}
∪ {∞}.

TypicallyRE is visualized as two copies of C\E, corresponding to the two branches

of the square root, glued together along E. For more details see [18]. These

representations and the properties which follow from them allow us to compute

the limit of the Christoffel functions explicitly.

For finite gap sets the Martin function can be given in terms of a Schwarz–

Christoffel mapping. Define

θE(z) =

∫ z

b0

−1

2
√

u − b0

g∏

j=1

(u − cj)√
(u − aj)(u − bj)

du,

where cj ∈ (aj, bj) is uniquely determined by

θE(bj) = θE(aj).

The function θE is a conformal mapping of C+ to a comb

5E = {ξ + iy : ξ, y > 0} \
g⋃

j=1

{ηj + iy : 0 < y < hj},

where ηj are called frequencies and hj heights. Note that θE can be extended to R,

θE(z) =
√

z, as z → −∞, θE(b0) = 0

and that θ−1
E (R+) = E. It follows from these properties that ME(z) = Im θE(z) is the

Martin function of the domain. These type of comb mappings are commonly used

in inverse spectral theory and in uniform approximation problems [1, 30] or [15]
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for a modern approach to the subject. Since ME can be extended to a subharmonic

function on C, its distributional Laplacian is a positive measure and we can define

ρE = 1
2π
1ME. The Riesz representation then yields

ME(z) = ME(z∗) +

∫

E
log
∣∣∣1 − z − z∗

t − z∗

∣∣∣dρE,

where z∗ < b0 is some normalization point. Computing 1
2π
1ME we find that

dρE(ξ) =
1

π
θ′

E(ξ)dξ =
−1

2π
√
ξ − b0

g∏

j=1

(ξ − cj)√
(ξ − aj)(ξ − bj)

dξ.(4.1)

That is, ρE is purely a.c. and its density is given by

dρE(ξ)

dξ
= fE(ξ) =

−1

2π
√
ξ − b0

g∏

j=1

(ξ − cj)√
(ξ − aj)(ξ − bj)

.

In particular, we see that fE(ξ) is real analytic inside any band of E, see also

Lemma B.2. We will also constantly use that θE(ξ) ∈ R for ξ ∈ E.

Let ψ+ denote the Weyl solution at +∞, cf. (1.4). Due to [18, p. 462], ψ+

corresponds to the restriction of the Baker–Akhiezer function to the upper sheet

and thus by [18, Theorem 1.20] it can be represented as

ψ+(x, z) = eiθE(z)xf (x, z),

where f is given in terms of Theta functions on RE. In the following let

[a, b] = I ⊂ int(E). We can extend ψ+(x, z) analytically to I. Moreover, we

have

(i) x 7→ f (x, ξ) is almost periodic,2

(ii) ξ 7→ f (x, ξ) is analytic on I and all derivatives are uniformly bounded for

x > 0 and ξ ∈ I.

4.3 Asymptotics of λL(ξ). In the following let [a, b] = I ⊂ int(E). If we

write f (ξ) or m+(ξ), ξ ∈ I, we mean the corresponding limits ξ + iε as ε → 0.

All of them can be analytically extended to I. Moreover, we have Im m+ > 0

there. To avoid confusion, we mention that for m+, this does not correspond to the

extension m(z), which is an extension through R \ E.

Let

W(f, g)(x) = f (x)g′(x) − f ′(x)g(x)

2This follows from continuity of the Theta function and the linearization of the Abel map in [18,
Theorem 1.20].
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denote the Wronskian of f and g. For ξ ∈ I, ψ+(x, ξ) and ψ+(x, ξ) both solve (1.4)

and thus their Wronskian is constant. For ξ ∈ I, ∂xψ+(0, ξ) 6= 0, since this would

lead to an eigenvalue and σ(HV) is purely absolutely continuous there. Recall

that m+ is given by

m+(z) = − ψ+(0, z)

∂xψ+(0, z)
.

Thus we see that by constancy of the Wronskian

(4.2)
Wξ(ψ+, ψ+) := W(ψ+(·, ξ), ψ+(·, ξ))(x) = W(ψ+(·, ξ), ψ+(·, ξ))(0)

= −2i|∂xψ+(0, ξ)|2 Im m+(ξ) 6= 0.

It follows now by direct verification of (1.2) that

v(x, ξ) =
ψ+(x, ξ)∂xψ+(0, ξ) − ψ+(x, ξ)∂xψ+(0, ξ)

Wξ(ψ+, ψ+)

defines the Neumann solution for HV .

Let us set

c(ξ) =
∂xψ+(0, ξ)

Wξ(ψ+, ψ+)

and

h(x, ξ) = c(ξ)ψ+(x, ξ).

It will also be convenient to take off the exponential part and consider

g(x, ξ) = e−iθE(ξ)xh(x, ξ).

Using Wξ(ψ+, ψ+) = −Wξ(ψ+, ψ+) and θE(x) ∈ R, we see that

v(x, ξ) = h(x, ξ) + h(x, ξ) = eiθE(ξ)xg(x, ξ) + e−iθE(ξ)xg(x, ξ).

The Herglotz function m+ can be continuously extended to I. Thus, if

dµ(ξ) = fµ(ξ)dξ + dµs(ξ)

denotes the spectral measure of HV , we have

fµ(ξ) =
1

π
Im m+(ξ).

Lemma 4.2. For ξ ∈ I, we have

W(h(·, ξ), h(·, ξ))(x) = −2iθE(ξ)|g(x, ξ)|2 + W(g(·, ξ), g(·, ξ))(x) =
1

2πifµ(ξ)
.
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Proof. The first equality follows by direct computation. Using the definition

of h and (4.2), we see that

W(h(·, ξ), h(·, ξ))(x) = W(c(ξ)ψ+(·, ξ), c(ξ)ψ+(·, ξ))(x)

= |c(ξ)|2Wξ(ψ+(·, ξ), ψ+(·, ξ))(x)

=
|∂xψ+(0, ξ)|2
|Wξ(ψ+, ψ+)|2 Wξ(ψ+(·, ξ), ψ+(·, ξ))(x) =

1

2πifµ(ξ)
.

�

We are now ready to prove the main theorem of this section:

Theorem 4.3. Let ξ ∈ I = [a, b] ⊂ int(E). Then

Kx(ξ, ξ) = x
fE(ξ)

fµ(ξ)
+ O(1)

as x → ∞,where the O(1) is uniform for ξ ∈ I.

Proof. We use the representation

v(x, ξ) = eiθE(ξ)xg(x, ξ) + e−iθE(ξ)xg(x, ξ).

All O notation is related to x → ∞. We have

∂ξv(x, ξ) = iθ′
E(ξ)x(eiθE(ξ)xg(x, ξ) + e−iθE(ξ)xg(x, ξ))

+ eiθE(ξ)x∂ξg(x, ξ) − e−iθE(ξ)x∂ξg(x, ξ)

= iθ′
E(ξ)x(eiθE(ξ)xg(x, ξ) − e−iθE(ξ)xg(x, ξ)) + O(1).

and

∂xv(x, ξ) = iθE(ξ)eiθE(ξ)xg(x, ξ) − iθE(ξ)e−iθE(ξ)xg(x, ξ)

+ eiθE(ξ)x∂xg(x, ξ) + e−iθE(ξ)x∂xg(x, ξ)

and

∂x∂ξv(x, ξ) = iθ′
E(ξ)x(iθE(ξ)eiθE(ξ)xg(x, ξ) + iθE(ξ)e−iθE(ξ)xg(x, ξ)

+ eiθE(ξ)x∂xg(x, ξ) − e−iθE(ξ)x∂xg(x, ξ)) + O(1).

Thus, having in mind (3.6) we compute

∂ξv(x, ξ)∂xv(x, ξ) − v(x, ξ)∂x∂ξv(x, ξ)

= 2iθ′
E(ξ)x(−2iθE(ξ)|g|2 + W(g(·, ξ), g(·, ξ))(x)) + O(1).
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Using Lemma 4.2 and (4.1) we see that

2iθ′
E(ξ)x(−2iθE(ξ)|g|2 + W(g(·, ξ), g(·, ξ))(x)) =

2πifE(ξ)

2πifµ(ξ)
x

which finishes the proof by noting that the O(1) is uniform for ξ ∈ I. �
We will use later that this implies in particular for any ε > 0

lim
L→∞

K(1+ε)L(ξ, ξ)

KL(ξ, ξ)
= 1 + ε(4.3)

uniformly for ξ ∈ I.

5 Proofs of the main theorems

The goal of this section is to prove Theorems 1.1, 1.2 and 1.3. We will need some

preparatory work.

Recall the set

SL =

{∫ L

0

cos(
√

zt)f (t)dt, f ∈ L2((0,L))

}

and that

λL(ξ) = min{‖F‖2
L2

dµ
: F ∈ SL, F(ξ) = 1},(5.1)

with minimizer

QL(z, z0) =
KL(z, z0)

KL(z0, z0)
.(5.2)

Lemma 5.1. Let d0 ∈ R and ξ0 > d0. Then there is c > 0 such that

Fc(z) =
sin(c(

√
z − d0 − √

ξ0 − d0))√
z − d0 − √

ξ0 − d0

+
sin(c(

√
z − d0 − √

ξ0 − d0))√
z − d0 +

√
ξ0 − d0

satisfies

(i) |Fc(ξ)| ≤ Fc(ξ0) for all ξ ≥ d0;

(ii) for any δ > 0 there exists ε > 0 such that for any ξ ∈ [d0,∞)\ (ξ0 −δ, ξ0 + δ)

we have that |Fc(ξ)| ≤ Fc(ξ0) − ε;

(iii) Fc ∈ Sc.

Proof. First we find c so that |Fc| has a global maximum at ξ0. Define

G(u) =
sin(u − u0)

u − u0

+
sin(u + u0)

u + u0

,
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where u0 is the first positive root of tan(2u0) − 2u0. It can be directly verified

that G is even and that |G(u)| ≤ G(u0) for all u ∈ R. From this it follows that for

given ζ0 > 0, c = u0/ζ0 and

H(ζ) =
sin(c(ζ − ζ0))

ζ − ζ0

+
sin(c(ζ + ζ0))

ζ + ζ0

,

that |H| has a global maximum at ζ0. Since ζ(z) =
√

z − d0 maps [d0,∞) onto

[0,∞) the first claim follows by substitution and setting

ζ0 = ζ(ξ0) =
√
ξ0 − d0, c = u0/

√
ξ0 − d0.

It remains to show that F ∈ Sc.

We claim that Fc is the reproducing kernel Kc(z, ξ0) for the constant potential

V = d0. The Christoffel–Darboux formula (3.4) applied to v(x, z) = cos(x
√

z − d0)

yields

Kc(z, ξ0) =
−√

z − d0 cos(c
√
ξ0 − d0) sin(c

√
z − d0)

ξ0 − z

+

√
ξ0 − d0 sin(c

√
ξ0 − d0) cos(c

√
z − d0)

ξ0 − z
.

Using trigonometric identities we get that Kc(z, z0) is given by

1

2

(sin(c(
√

z − d0 − √
ξ0 − d0))(

√
z − d0 +

√
ξ0 − d0)

z − d0 − (ξ0 − d0)

+
sin(c(

√
z − d0 +

√
ξ0 − d0))(

√
z − d0 − √

ξ0 − d0)

z − d0 − (ξ0 − d0)

)
.

Thus,

Fc(z) = 2Kc(z, ξ0)

and in particular, Fc ∈ Sc. �

Remark. For later reference we mention that the c is explicitly constructed in

the proof. Let u0 be the first positive solution of 2u = tan(2u), i.e., u0 is a constant

not depending on d0, ξ0. Then c is given by

c =
u0√
ξ0 − d0

.

In particular, if d0(ε) = min E − ε and ξ0 ∈ int(E), then

lim
ε→0

εc(ε) = 0(5.3)

and this limit is uniform for ξ0 ∈ [a, b] ⊂ int(E).
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Recall the δ-extension (2.5). The following estimate is the crucial bound which

allows to prove (1.7) for regular potentials:

Lemma 5.2. Let V be a Stahl–Totik regular potential such that E = σess(HV)

is Dirichlet regular, µ the associated spectral measure and QL as in (5.2). Then

for any ε > 0 there is C > 0 and δ > 0 such that for any ξ ∈ Eδ and L > 0

|QL(ξ, ξ0)| ≤ CeεL
√
λL(ξ0).

Proof. By Theorem 2.6 we find δ > 0 so that for ξ ∈ Eδ and x > 0

|v(x, ξ)| ≤ C̃eεx.

Thus,

∫ L

0

v(x, ξ)2dx ≤ C̃2

∫ L

0

e2εxdx =
C̃2

2ε
(e2εL − 1) ≤ C̃2

2ε
e2εL.

Thus with C2 = C̃2/2ε we have

(∫ L

0

v(x, ξ)2dx

)1/2

≤ CeεL.

On the other hand, by the reproducing kernel property

|KL(ξ, ξ0)| = |〈KL(·, ξ0),KL(·, ξ)〉| ≤ ‖KL(·, ξ0)‖‖KL(·, ξ)‖
=
√

KL(ξ0, ξ0)
√

KL(ξ, ξ)

Using

KL(ξ, ξ) =

∫ L

0

v(x, ξ)2dx, λL(ξ0) =
1

KL(ξ0, ξ0)

and (5.2) the claim follows. �
We are now ready to prove the main comparising result that allows to lift the

results from Section 4 to arbitrary regular potentials.

Theorem 5.3. Let V, Ṽ be potentials satisfying (1.1) and µ, µ̃ the associated

spectral measures and E = σess(HV), Ẽ = σess(HṼ). Suppose that V is a Stahl–Totik

regular potential and E Dirichlet regular. Let I be a closed interval such that

I ⊂ int(E) ∩ int(Ẽ), µ and µ̃ are absolutely continuous in a neighborhood of I and

its densities fµ, fµ̃ are positive and continuous at every point of I. For any ε > 0,

let δ > 0 be as in Lemma 5.2. If there exists δ1 > 0 such that

Ẽδ1
⊂ Eδ(5.4)
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then there exist δ2 = δ2(I) > 0, D = D(ε) > 0 and γ = γ(ε, δ2) < 1 such that

λM(ξ0, Ṽ)

λL(ξ0,V)
≤ sup

|ξ−ξ0|<δ2

fµ̃(ξ)

fµ(ξ)
+ Dγ4Ne2εL + De2εL2−2N,

where M = L + 2Nc and N = N(ε) is sufficiently large.

Remark. Let us comment on the meaning of (5.4). In the proof we will need

to estimate the extremizer for λL(ξ0,V) on supp µ̃. Close to the spectrum this can

be done due to regularity by Lemma 5.2. However, there may be point masses

of µ̃ in the gaps. By extending Ẽ we ensure that there are only finitely many point

masses in R \ Ẽδ1
, since there can only be finitely many eigenvalues in each gap

of Ẽδ1
and Ẽδ1

is a finite gap set.

Proof. Let QV
L (ξ, ξ0) be the minimizer for V and the point ξ0. Then by Lem-

ma 5.2 for ξ ∈ Eδ we have

|QV
L (ξ, ξ0)| ≤ CeεL

√
λL(ξ0,V).(5.5)

Thus by assumption this also holds on Ẽδ1
. Let d0 = min Ẽδ1

, Fc as in Lemma 5.1

and

G(z) =
Fc(z)

Fc(ξ0)
.

Then

(i) G(ξ0) = 1;

(ii) for any r > 0 there is γ < 1 such that for every ξ > d0 with |ξ − ξ0| > r,

|G(ξ)| < γ;

(iii) there is C1 > 0 such that for ξ > ξ0 + 1,

|G(ξ)| ≤ C1√
ξ − ξ0

.

(iv) G ∈ Sc.

Since Ẽδ1
has only finitely many gaps, there are only finitely many point masses

of µ̃ in R \ Ẽδ1
. Let these points be denoted by ζ1, . . . , ζn. Let P be a polynomial

of degree n + 1 that vanishes at these points and P has a local maximum at ξ0 such

that P(ξ0) = 1. Let N > n + 1 and define

Q = QV
L G2NP.

We claim that Q ∈ SL+2Nc. Use k2 = z and define

H(k) = Q(k2).
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Since QV
L ∈ SL and F ∈ Sc it follows that H is an even entire function of exponential

type at most L +2Nc. Thus, by (3.8) it remains to show that H ∈ L2
dk. By (iii) G2NP

are bounded on R+. Moreover, since QV
L ∈ SL, QL(k2) ∈ L2

dk and we conclude

that H ∈ L2
dk. Moreover, we have Q(ξ0) = 1.

Thus, by (5.1) we get

λL+2Nc(ξ0, Ṽ) ≤ ‖Q‖2
L2

dµ̃
.(5.6)

We will split the integral into several parts. First let δ2 > 0 such that on

I0 = (ξ0 − δ2, ξ0 + δ2), µ, µ̃ are purely absolutely continuous and both are positive

there. This can be achieved since they are continuous at every point of I. Moreover,

let δ2 be sufficiently small so that |G|, |P| ≤ 1 on I0. Then

∫

I0

|Q(ξ)|2dµ̃(ξ) ≤
∫

I0

|QV
L (ξ, ξ0)|2dµ̃(ξ)

≤ sup
t∈I0

fµ̃(t)

fµ(t)

∫

I0

|QV
L (ξ, ξ0)|2dµ(ξ)

≤ sup
t∈I0

fµ̃(t)

fµ(t)
λL(ξ0,V).

Let us note that on supp (µ̃) we have

|Q(ξ)| ≤ CeεL
√
λL(ξ0)|G(ξ)|2N|P(ξ)|.(5.7)

For, we have already argued that (5.5) holds on Ẽδ1
. Thus, the only points where

(5.7) may fail are the finite point masses of µ̃ in R \ Ẽδ1
. But this is where P

vanishes and thus we obtain (5.7) on supp (µ̃).

Let I1 = (supp (µ̃) \ I0) ∩ (−∞, ξ0 + 1] and I2 = (supp (µ̃)) ∩ (ξ0 + 1,∞). Then

∫

I1

|Q(ξ)|2dµ̃(ξ) ≤ C2e2εLλL(ξ0,V)

∫

I1

|G(ξ)|4N|P(ξ)|2dµ̃(ξ)

≤ γ4NC2e2εLλL(ξ0,V)

∫

I1

|P(ξ)|2dµ̃(ξ)

= γ4NC2e2εLC1λL(ξ0,V).

Since ∫

R

dµ̃(ξ)

1 + ξ2
< ∞,

we get for n ≥ 2 ∫ ∞

2

dµ(ξ)

ξn
≤ K

2n
, K = 4

∫ ∞

2

dµ(ξ)

ξ2
.
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We conclude
∫

I2

|Q(ξ)|2dµ̃(ξ) ≤ C2e2εLλL(ξ0,V)

∫

I2

|G(ξ)|4N|P(ξ)|2dµ̃(ξ)

≤ C2C2e2εLλL(ξ0,V)

∫

I2

ξ2(n+1)

(ξ − ξ0)2N
dµ̃(ξ)

≤ C3e2εLλL(ξ0,V)2−2N.

Combining the integrals over I1, I2, I3 and using (5.6) yields the claim. �

Remark. In the proof we have d0 = min Ẽδ1
and thus d0 depends on ε. By the

definition of G via F in Lemma 5.1 this shows that γ < 1, which is the maximum

of G outside of (ξ0 − δ2, ξ0 − δ2), also depends on ε. However, for fixed δ2 we have

γ1 = sup
ε∈(0,1)

γ(ε, δ2) < 1.(5.8)

This remains true, if ξ0 ∈ [a, b] ⊂ int(E). This will be important in the following.

We are now ready to prove Theorem 1.1:

Proof of Theorem 1.1. Assume that E = σess(µ) and µ is regular and

let Er be the extension as defined above. Clearly Er is a finite gap set and Er

decreasesmonotonically to E. We conclude from Lemma B.2 that dρEr
is absolutely

continuous on I and that the densities fEr
(ξ) increase with r and are bounded above

by fE(ξ). We claim that

lim
r→∞ fEr

(ξ) = fE(ξ)(5.9)

uniformly on I. By monotonicity and boundedness for every ξ,

lim
r→∞ fEr

(ξ) = g(ξ)

exists and since fEr
are in particular continuous the convergence is uniform and g is

continuous. On the other hand, using the upper envelope theorem, we conclude as

in [12, Lemma 6.1] that MEr
→ ME, which implies ρEr

→ ρE in the weak-∗ sense.

We conclude that g = fE on I.

For fixed r let Vr be a finite gap potential as discussed in Section 4 and µr its

spectral measure. Note that Vr is Stahl–Totik regular. We will apply Theorem 5.3

with µ = µr and µ̃ = µ. Since E ⊂ Er, (5.4) is satisfied for arbitrary ε > 0.

Let ε > 0 be fixed, and δ2,D be as in Theorem 5.3 and γ1 be defined by (5.8).

Then
λM(ξ0,V)

λL(ξ0,Vr)
≤ sup

|ξ−ξ0|<δ1

fµ(t)

fµr
(t)

+ Dγ4N
1 e2εL + De2εL2−2N,
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where M = L + 2Nc. Choose η so that max{γ1, 1/
√

2}η ≤ e−1 and N = ηεL. Note

that by the definition of γ1, η does not depend on ε. It follows that

Dγ4N
1 e2εL + De2εL2−2N = O(e−2εL).

Thus,

lim sup
M→∞

λM(ξ0,V)

λL(ξ0,Vr)
≤ sup

|ξ−ξ0|<δ1

fµ(ξ)

fµr
(ξ)
.

Since M = L(1 + 2ηεc) we obtain by (4.3)

lim
L→∞

λL(ξ0,Vr)

λ(1+2ηεc)L(ξ0,Vr)
= 1 + 2ηεc.

Therefore,

lim sup
M→∞

λM(ξ0,V)

λM(ξ0,Vr)
≤ sup

|ξ−ζ0|<δ1

fµ(ξ)

fµr
(ξ)

(1 + 2ηεc).

Taking first ε → 0 and using that εc(ε) → 0 by (5.3) and then δ1 → 0 we get

lim sup
M→∞

λM(ξ0,V)

λM(ξ0,Vr)
≤ fµ(ξ0)

fµr
(ξ0)

.(5.10)

Since, on the other hand, Er is a finite gap set we have

lim
M→∞ MλM(ξ0,Vr) =

fµr
(ξ0)

fEr
(ξ0)

.

Plugging this into (5.10) yields

lim sup
M→∞

MλM(ζ0,V) ≤ fµ(ξ0)

fEr
(ξ0)

.

By (5.9) sending r → 0 we conclude that

lim sup
M→∞

MλM(ζ0,V) ≤ fµ(ξ0)

fE(ξ0)
.(5.11)

To get the opposite inequality we would like to switch the roles of V and Vr. It

can be seen from the proof of Theorem 5.3 that in this case we can even take δ1 = 0,

since µr only has finitely many point masses outside Er. In Theorem 5.3 we have

to estimate the eigensolutions of HV on Er. This shows that for fixed r > 0, we

cannot take ε → 0. However, for fixed r > 0 we find ε(r) and note that ε(r) → 0

as r → 0.

Now switching the roles of V and Vr we get

λM(ξ0,Vr)

λL(ξ0,V)
≤ sup

|ξ−ξ0|<δ1

fµr
(ξ)

fµ(ξ)
+ Dγ4N

1 e2εL + De2εL2−2N,
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where N = ηεL and, as before,

lim sup
L→∞

λL(ξ0,Vr)

λL(ξ0,V)
≤ fµr

(ξ0)

fµ(ξ0)

1

1 + 2ηεc

and

lim sup
L→∞

1

LλL(ζ0,V)
≤ fEr

(ξ0)

fµ(ξ0)

1

1 + 2ηεc
.

But now for fixed r we cannot take ε → 0. However, since ε(r) → 0 as r → 0 we

get by (5.9)

lim sup
L→∞

1

LλL(ξ0,V)
≤ fE(ξ0)

fµ(ξ0)

and thus

fµ(ξ0)

fE(ξ0)
≤ lim inf

L→∞ LλL(ξ0,V).(5.12)

Combining (5.11) and (5.12) and noting that all the arguments are uniform in ξ0 ∈ I

yields the claim. �

Proof of Theorem 1.2. Let m be the Weyl m-function associated to HV .

We showed in Section 3 that HV can be written as a canonical system. Thus, by

[13, Theorem 9] it follows that if for ξ ∈ I the limit

1

π
lim
z→ξ

Im m(z) = fµ(ξ) ∈ (0,∞)(5.13)

exists non-tangentially, then

lim
L→∞λL(ξ)KL(ξ + λL(ξ)z, ξ + λL(ξ)w) =

sin(πfµ(ξ)(w− z))

πfµ(ξ)(w− z)
(5.14)

uniformly for ξ ∈ I and z, w in compact subsets of C. It follows from properties

of Poisson integrals [38, Theorem 11.22, Theorem 11.23] that (5.13) holds on I

under the assumptions of Theorem 1.2. From Theorem 1.1 we conclude that

lim
L→∞ LλL(ξ) =

fµ(ξ)

fE(ξ)
.

The claim follows from continuity of the sinc kernel and the fact that (5.14) holds

uniformly for z, w in compact subsets of C. �
We finish this section with the proof of Theorem 1.3. There are several proofs

in the orthogonal polynomials case that show how to conclude from universality

clock spacing for the zeros of orthogonal polynomials, which only use interlacing

properties of the zeros of orthogonal polynomials; cf. [16, 25, 39] The same proof
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carries over to the setting of continuum Schrödinger operators (or even canonical

systems) without any change. We supply the proof for the reader’s convenience.

Proof of Theorem 1.3. We start by a well known fact: The function

mL(z) =
v(L, z)

v ′(L, z)

is a Herglotz function and since v(L, ·), v ′(L, ·) are entire, the measure in its integral

representation is purely discrete and supported at the zeros of v ′(L, z). Since mL is

increasing between poles, the zeros of v(L, z) and v ′(L, z) interlace.

By (3.4) and the fact that v(L, ·) and v ′(L, ·) cannot vanish simultaneously, we

see that for z 6= w, KL(z, w) = 0 if and only if mL(z) = mL(w) (the value of mL(z)

can also be ∞ corresponding to a zero of v ′(L, z)). Fix ξ ∈ I and define

f̃L(z) =
KL(ξ, ξ + z

LfE(ξ)
)

KL(ξ, ξ)
.

Let · · · < z̃L−1 < z̃L
0 = 0 < z̃L

1 < · · · denote the zeros of f̃L(z). By (1.11) we see that

z̃L
±1 → ±1 and inductively we get

z̃L
±j → ±j.

Let 0 ≤ zL
0 < z̃L

1 be so that ξ +
zL

0

fE(x0)L
is the first pole of mL to the right of ξ. Set

fL(z) =
KL(ξ +

zL
0

LfE(ξ)
, ξ +

zL
0+z

LfE(ξ)
)

KL(ξ, ξ)
.

If we denote the zeros of fL by · · ·<zL−1<zL
0 =0<zL

1 < · · · we see as before that

zL
±j → ±j

By our definition of zL
0 , ξL

j = ξ +
zL

0 +zL
j

fE(x0)L
are the zeros of v ′(L, z), which finishes

the proof. Since the convergence in (1.11) is uniform this shows that (1.12) holds

uniformly on I. �

Appendix A de Branges spaces and canonical systems

It has already been realized in [27] and also in [13, 8] that the theory of canoni-

cal systems is useful for the understanding of universality limits for Christoffel–

Darboux kernels. The inverse theory developed by de Branges is based on a theory

of Hilbert spaces of entire functions [11]. These spaces are called de Branges
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spaces. We recall some part of the general theory, to highlight that the objects

discussed in Section 3 are only a special case of this rich theory. We follow the

presentation in [37].

For an entire function F we denote F#(z) = F(z). Moreover, let H2 = H2(C+)

denote the standard Hardy space of the upper half-plane.

Definition A.1. A Hermite–Biehler function is an entire function E with no

zeros in C+ satisfying |E(z)| ≥ |E#(z)| for z ∈ C+. Given a Hermite–Biehler

function E we define the de Branges space B(E) as

B(E) = {F | F entire,F/E,F#/E ∈ H2}.

In the following it will be useful to decompose E into its real and imaginary

part. We define a(z) = 1
2
(E(z) + E#(z)) and c(z) = 1

2i
(E#(z) − E(z)). The notation a

and c and the unexpected minus sign in the definition of c will become clear below.

Example A.2. The motivating example for de Branges was the Hermite-

Biehler function Ea(z) = e−iaz for a > 0, in which case B(Ea) denotes the standard

Paley–Wiener space of entire square-integrable functions of exponential type at

most a.

Theorem A.3 ([37, Theorem 4.4]). Let E be a Hermite–Biehler function.

Then B(E) becomes a Hilbert space when endowed with the scalar product

〈F,G〉B(E) =
1

π

∫ ∞

−∞
F(t)G(t)

dt

|E(t)|2 .

B(E) is a reproducing kernel Hilbert space with reproducing kernel:

KE(z, w) =
E(w)E(z) − E#(w)E#(z)

2i(w− z)
=

a(z, x)c(w, x) − c(z, x)a(w, x)

w− z
.

De Branges spaces arise naturally when discussing canonical systems:

Definition A.4. Consider matrix-valued functions A,B : [0,N) → Mat(2,C)

for some N > 0 or N = ∞ which are locally integrable in the sense that their entries

are in L1([0, x]) for all x < N, and have the property that A(x) ≥ 0,B(x)∗ = B(x)

and tr A(x)j = tr B(x)j = 0 for Lebesgue-a.e. x ∈ [0,N), with j defined below. A

canonical system is a differential equation of the form

j∂xy(x, z) = (−zA(x) + B(x))y(x, z), j =

(
0 −1

1 0

)
.
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A solution T : [0,N)×C → Mat(2,C) which satisfies the initial value problem

j∂xT(x, z) = (−zA(x) + B(x))T(x, z), T(0, z) = I2

is called the transfer matrix of the canonical system. It is a fundamental object in

the theory of canonical systems. Differentiating T(s, w)∗jT(s, z) we see that

T(x, w)∗jT(x, z) − j = (w− z)

∫ x

0

T(s, w)∗A(s)T(s, z)ds.(A.1)

The expression on the left-hand side above is called the j form of T [3, 21]. For

fixed x as a function of z it is entire and satisfies

i
(
T(x, z)∗jT(x, z) − j

)
=





≥ 0, if z ∈ C+,

= 0, if z ∈ R.

We say that T is j-expanding in C+ and j-unitary on R. Moreover, from (A.1) it

also follows that for z ∈ C+, T satisfies the j-monotonicity property

i(T∗(x2, z)jT(x2, z) − T∗(x1, z)jT(x1, z)) ≥ 0(A.2)

for x2 ≥ x1. Thus, {T(x, z)}x∈[0,N) forms a j-monotonic family of entire matrix

functions. It can be shown that vice-versa to every such family one can associate

a canonical system [10, Remark 2.3]. The j-form is invariant under multiplying T

from the left by some U ∈ SL(2,R), since such U satisfies U∗jU = j. This gives a

certain freedom, which is called gauge freedom. A common gauge normalization,

which was used by Potapov and de Branges, is to assume that for all x ∈ [0,N),

T(x, 0) = I, which leads on the level of canonical systems to B = 0. In this

case A is usually denoted by H and called the Hamiltonian of the system. We call

this the Potapov–de Branges gauge. If T is normalized arbitrarily, then passing

to T̃(x, z) = T(x, 0)−1T(x, z) we obtain a transfer matrix in the Potapov–de Branges

gauge. The corresponding Hamiltonian is given by

H(x) = T(x, 0)∗A(x)T(x, 0).

In particular, any canonical system obtained from a Schrödinger equation as in (3.2)

can be rewritten into the Potapov–de Branges gauge. We found it more convenient

to provide this gauge independent presentation and work directly with (3.2).

Let us write

T(x, z) =

(
a(z, x) b(z, x)

c(z, x) d(z, x)

)
.

It follows from (A.2) that for fixed x

m(z, x) = −a(z, x)

c(z, x)
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is a generalized Herglotz function, i.e., the map z 7→ m(z, x) maps C+ analytically

into C+, where C+ = C+ ∪ R ∪ {∞}; see [37, Lemma 4.15].3

Using this we see that

E(z, x) := a(z, x) − ic(z, x)(A.3)

satisfies
∣∣∣E

#(z, x)

E(z, x)

∣∣∣ =
∣∣∣ a(z, x) + ic(z, x)

a(z, x) − ic(z, x)

∣∣∣ =
∣∣∣
−a(z,x)

c(z,x)
− i

−a(z,x)
c(z,x)

+ i

∣∣∣ ≤ 1

and thus E(z, x) is a Hermite–Biehler function. This also explains in hindsight the

minus sign in the definition of c. Dividing by (w− z) in (A.1) the (1,1)-entry gives

exactly the reproducing kernel

KEx
(z, w) =

a(z, x)c(w, x) − c(z, x)a(w, x)

w− z
(A.4)

=

(
1

0

)∗ ∫ x

0

T(s, w)∗A(s)T(s, z)ds

(
1

0

)
,(A.5)

where Ex(z) = E(z, x).

The canonical system is said to be limit point at N if
∫ N

0

tr T(s, 0)∗A(s)T(s, 0)ds = ∞.

Due to (A.2), Weyl disks can be introduced in this setting. By a standard abuse of

notation, we will use the same notation for an SL(2,C) matrix and for the Möbius

transformation it generates on the Riemann sphere Ĉ, with the standard projective

identification of w ∈ C with the coset of
(
w
1

)
and ∞ with the coset of

(
1
0

)
. For any

z ∈ C+, the Weyl disks are defined by

D(x, z) = {w ∈ Ĉ | T(x, z)w ∈ C+}.
Due to (A.2), the Weyl disks are nested, D(x2, z) ⊂ D(x1, z) for x1 ≤ x2. Thus, for

each z ∈ C+, the intersection
⋂

0≤x<N D(x, z) is a disk or a point. The assumption

of being limit point at N exactly means that this intersection is a point. In this case,

the Weyl disks define an analytic map m : C+ → C+ by

{m(z)} =
⋂

0≤x<N

D(x, z).

Note that since SL(2,R) matrices leave C+ invariant, also D(x, z) and thus m do

not depend on the gauge normalization.

3This definition differs slightly from the definition of Herglotz functions given in the introduction,
since we allow values in C+ rather than in C+. By the maximum principle, an analytic function that
attains a value in R ∪ {∞} must already be constant and therefore the set of generalized Herglotz
functions consists of Herglotz functions and constant functions with values in R ∪ {∞}.
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Appendix B Martin measure

Let E be a semibounded set so that for any Martin function for the domain C \ E
and the point ∞

lim
z→−∞

M(z)√−z
> 0.

Sets with this property are called Akhiezer–Levin sets. Let again ME be normalized

so that the limit is equal to 1. Since ME vanishes q.e. on E it can be extended to a

subharmonic function on C. Let ρE be the associated Riesz measure, defined by

ρE :=
1

2π
1ME.

Since ME is a harmonic function in C+, we find an analytic function, 2E, with

Im2E = ME and since ME is positive, 2E is a Herglotz function. Moreover, it

can be shown that also i2′
E is a Herglotz function and the measure in its integral

representation is exactly ρE:

Lemma B.1 ([12, Lemma 2.3]). The measure ρE is such that

∫

R

dρE(t)

1 + |t| <∞.

Moreover, i2′
E is a Herglotz function and we have

i2′
E(z) =

∫

R

dρE(t)

t − z
.

Recall that dρE(t) = fEdt + dρE,s(t) denotes the Lebesgue decomposition of ρE.

Lemma B.2. Let (a, b) = I ⊂ E◦. Then ρE(ξ)|I is absolutely continuous

and fE(ξ) is real analytic. Moreover, if I ⊂ E1 ⊂ E2 we have

fE2
(ξ)|I ≤ fE1

(ξ)|I .(B.1)

Proof. Since I only contains Dirichlet regular points by [34, Theorem 4.2.2],

for every ξ ∈ I, lim
z→ξ

ME(z) = 0, by [12, Theorem 2.1]. Since 2E is a Herglotz

function, this implies that it can be analytically extended through I. Hence,

also 2′
E(z) has an analytic extension through I. Since i2′

E is a Herglotz function,

this shows that the measure in its integral representation is purely absolutely

continuous and moreover,
1

π
Re2′

E(ξ) = fE(ξ).

Since ME|I = 0, Im2′
E(ξ) = 0 and we conclude that fE is real analytic on I.
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If E1 ≤ E2 we have that ME2
≤ ME1

as follows, e.g., from [12, Lemma 2.7].

Since by the Cauchy–Riemann equations we get

πfE(ξ) = lim
y→0

ME(ξ + iy)

y

and we conclude (B.1).
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