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Chapter 1

Herglotz functions

1.1 Defintions and topological properties

We will work with three classes of functions. All of them will have certain advantages
and are in an (almost) bijective correspondence.

1.1.1 Definition. Let Q2 c C be open. We denote by Hol(€2), the set of holomorphic
functions on Q.

e Let f € Hol(D). f is called a Schur function, if f(D) c D. The set of all Schur
functions is denoted by S.

o Let f € Hol(D). f is called a Caratheordory function, if Re f(z) > 0, for all
z€D,

e Let f € Hol(C,). f is called a Herglotz function, if Im f(z) > 0, for all z € C,..
The set of all Herglotz functions is denoted by Nj.

The following example of a Herglotz functions is the main reason for the importance of
Herglotz functions in the spectral theory of self-adjoint operators:

1.1.2 Example. Let H be a Hilbert space, A a bounded linear, self-adjoint operator on
H and v € H. Define for z € C,

my(z) = (A = 2"'v, ).

Then m, € Njy. Since R4(z) := (A—2z)~! is analytic (with values in L,(H)), m, is analytic
in C,. Moreover,

m(@) -m@) _(A-2"' - @A- )

-z -7
Let us note that if f is a Schur class function and |f(zo)| = 1 for some z € D, then by
the maximum modulus principle, f(z) == ¢, with |c| = 1. That is, by considering Schur
class functions taking values in D rather than D, we “only” add unimodular constants.
Let us recall the following fact from comoplex analysis. Let Q be a domain and K, a
compact exhaustion. That is, K,, C Q are compact, K,, C int(K,+) and UK,, = Q. Then
we define a metric on Hol(€2) by,

=(A-D'A-27'v,w=llA-2VI* = 0.

d(f,) = Y, 27" min(sup|f(2) - g2, ). (1.1)

k=1 =Ky
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With this metric (Hol(Q), d) is a complete metric space and this metric induces uniform
convergence on compact subsets of Q.

1.1.3 Lemma. (S, d|sxs) is a compact metric space.

Proof. Since sup{|f(z)] | z € D, f € 8§} < 1, S is precompact by Montel’s theorem.
Thus, we only need to show that it is closed in (Hol(Q2),d). We need to show that if
fr» € Dand d(f,, f) — O, then |f| < 1 on D. This is an immediate consequence of the
fact that convergence with respect to d implies pointwise convergence. a

1.1.4 Corollary. Let g, € S and assume that there exists D C D wich accumulates in D
such that for all z € D lim, g,(2) exists. Then there exists g € D such that d(g,,g) — 0.

Proof. Tt suffices to show that every subsequence of g, has a subsequence which
converges to g in d. Let g, be an arbitrary subsequence, then by compactness we find a
subsequence g,, and & € S, so that d(g,,, h) — 0. Fix z € D. Then we have

18(2) = h(@)| < 18(2) = g, ()] + I8, (2) = M) = 0.
Thus, by the identity theorem we conclude that & = g. a

We see that we there are three domains that play an important role in the definitions of
these classes of functions. Namely, D, C,, and H, = {z € C | Rez > 0}. Let us note
that these domains can be mapped into each other by means of Mobius transformations.
We have that the following mappings are conformal mappings of the corresponding
domains

T_{H+—>C+ {C+—>D

z B iz - 7z b =
Clearly if f is a Caratheodory function, then

8(2) = 7(f(¢(2)))

is a Herglotz function and this sets a bijection between these class of functions. This is
not precisely true for the class S. Note that ¢~ (u) = i1 Thus, ¢~'(1) = co. For this

1—u
reason, it is sometimes convenient to consider the set Ny = Ny U {oo}. Then again, we
have that if f € S, then

feS = g =¢ ' (fle() € No.

In particular, the function f = 1 is mapped onto the function g = co. This mapping sets
up a bijection. In fact, if we define for f, g € Ny the metric

dny(f,8) = Z 27" min(supex, dy (f(2), 8(2)), 1),
k=1
where d, denotes the chordal metric on the Riemann sphere, then this mapping even
becomes a homeomorphism.
1.1.5 Corollary. (N, d No) S @ compact metric space.

1.1.6 Corollary. Let f,. Assume that there exists D C C, which accumulates in C, such
that for all z € D lim,, f,(z) exists. Then there exists f € Ny such that d(f,, f)n, — 0.
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1.2 J-expanding matrix functions

Let us consider points z € C (the Riemann spere) in their projective coordinates. That is,
we consider vectors in C2 \ {(0, 0)7}, with the equivalence relation

[)-) = et
V2 u V2 u

The projective line is defined by CIP’I_z (C\{(0,0)7}/ ~). The quotient space can be
identified with the Riemann sphere C, bu using the quotient map « : C2\ {(0, O)7}

defined by
x wq _ ‘:—; wy 0
wy 00 wy =0

C is embedded into CP! is embedded into the CP' by z — (z, 1)7, if z # oo and
oo - (1,0)7. Projective coordinates are particularly convenient if working with Mdbius

. b . .
transformations. Let A = (? d) be so that det A = 1. To this we can associate the

Mobius transformation

az+b
2 fa(@) = v d
Note that this can be rephrased to
faom=moA.

It will be convenient to introduce an abbreviation for this

A x z:= fa(2).
1.2.1 Lemma. Let A, B € C¥2, be invertible. Then the following hold
(i) fa =1id if and only if A = zI for some z € C\ {0};
(ii) fap = fao fo;
(iii) The map fy is a bijection of C onto itself:
Proof. (i): Assume that f4 =id and let x € C2\ {(0, 0)T}. Then
m(Ax) = fa(n(x)) = n(x).

This means that x is an eigenvector for A. Since x was arbitrary, we have shown that
any x is an eigenvector of A, implying that A = z/ for some z € C \ {0};
(i7) We have

fapom=moAoB=fiomoB=fjo0fpom.

Since 7 is surjective, this implies that fap = f1 o f5.
(ii7) Follows from (i) and (i) since

Jao far = far o fa=1id.
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Note that in particular this implies that for any A # 0, f4 = f4 since
Sfaa = fua = fuo fa = fa
Thus, it suffices to consider matrices with detA = 1. Recall that
SL(C,2) = {A € C¥? | detA = 1}.

The following lemma will be crucial in the course of the lecture. We will call a set a
generalized circle on C if it is either a standard circle or a straight line. Interpreting a
straight line as a circle containing co. Note that generalized circles are exactly given by
equations of the form

azz+pz+Pi+y =0, (1.2)
where a,8 € R, 8 € C and |]> > ay. In particular, @ = 0 corresponds to straight lines.

1.2.2 Lemma. Let A € SL(2,C), A = (? g). Then fx maps the set of generalized circles

onto itself. In particular, R is mapped onto a circle with radius and center given by

_bc-ad L]
cd—cd ldc — cd|

IfImdc = 0, then the circle degenerates to a line.

m

Proof. Assume first that ¢ # 0. Then we can write

(1 a/c\(1/c 0\(O -1\(1 d/c
w=lo )5 0 )6 13
Note that this shows that M is a composition of translations, a dilation, a rotation and
the inversion z +— —1/z. It is clear that transations, dilations and rotations leave the set

of generalized circles invariant. That this also holds for inversions follows from (1.2).
Thus, the first claim is proved in the case ¢ # 0. If c = 0, det A = 1 implies d # 0 and

a = 1/d. From this we see that
1 ab\fa O
M= (0 1 )(o 1/a)
and the claim also follows. _ B
It remains to compute the image of R. Let us assume that Im(cd # 0). Then using (1.3)
we can trace to image of all the above transformations. We get
2 1
Ayl

1 i
4)%} { 2ypc?

P
43t |

l-2
77— —

RU{oo}|—>{x+iy0|x€RU{oo}}0—>{Z| o

> {u |
One can now directly check that
1 a i

—— =r and +—
4y2\cl* ¢ 22

a N i
u—12
¢ 2ypc?

If Imed = 0, then yo € R and hence {x + iy | x € R U oo} = R U {eo}. Since z — —1/z
preserves R U {co} and all other transformations map lines onto lines, we see that in this
case the image is a line.

Q
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Jim (? ‘01).

Letw=(}jl)eC?\ {( 9 )} Then a direct computations shows that

Let J denote the signature matrix

<0 & nmnweC_ (1.4)

>0 < naw)eC,
—iw"Jw C
=0 & aw)eR

Letv = (z, 1)T. Then, we see that v*Jv = z —z. Thus, Imz > 0, if and only if v*Jv/i > 0.
This motivates the following definition.

1.2.3 Definition. Let M : C — C?*? so that each entry of M belongs to Hol(C). We call

o M J-expanding if —i(M(z)*JM(z) — J) > 0 for every z € C,

e M J-inner, if M is J-expanding and M(z)*JM(z) —J = 0 for z € R.
A constant function M is called J unitary, if it is J inner, i.e, M*JM = J.
The special linear group is given by

SL(2,R) := {A e R¥? | detA = 1} (1.5)
One can show that
SL(2,R) = {A | A is J unitary, detA = 1}.

Note that SL(2,R) correspond exactly to those Mdbius transformations which are
conformal automorphisms of C,. It is now easy to see that A € SL(2, R) preserves C,.
This follows, since A being j-unitary implies that Im f4(z) > 0 if and only if Imz > 0.

1.2.4 Lemma. The following statements hold.

(i) If M € SIL(2,C) satisfies —i(M*JM — J) > 0, then z — M % z defines a Herglotz
function.

(ii) If M(2) is J-expanding matrix function and f € Ny, then M % f € No. If there
exists z € C, such that Im f(z) > 0 or —i(M(z)* jM(2) — j) > O, then M % f € Np.

(iii) Let (M,(2))nen be a sequence of J-expanding matrix function and (f,)nen, a
sequence of Herglotz functions. Assume that for every z € C, M,(2) * f,(2) has
a limit m(z). Then m € Nj.

Proof. (i): Let us first show that for z € C,, M % z # R. Let v = (), w = Mv and recall
that M x z = w(w). Then from (1.4) it follows that

—iw'Jw > —-iv'Jv >0

and hence m(w) € C,. In particular m(w) # co. This implies that M x z € Hol(C,) and
ImM % z>0.
(i1): Clearly M(z) % f(z) is meromorphic. Let as before v = (f '(IZ) ), w = Mv Now we
conclude

—iw'Jw = —-iv'Jv >0 (1.6)
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and hence M(z) x f(z) = n(w) € No. Note that this means that either Im M(z) % f(z)>0
for all z € C, or Im M(z) % f(z) = ¢ for ¢ € R. Hence, we conclude that Im M(z) % f(z) >
0 for all z € C, if there exists z € C, such that one of the inequalities is strict in (1.6).

(iii) gn(z) =: M, (z) * fu(z) is a sequence of Herglotz functions that converges pointwise.
Thus, by Corollary 1.1.5 it converges in dy, and the limit is again a Herglotz function.

Q

1.3 Integral representation

The goal of this section is to show that f € N if and only if there existsa € R, 5> 0

and a positive Borel measure u with [ll‘i (xxz) < oo such that

1
=a+pz+ _— = d 1.7
mz) = a+pz f(x_z " 2) u(x). (1.7)
We will establish first an integral representation for Caratheordory functions and then
use their bijective correspondence with Herglotz functions to obtain (1.7).

In the following let T = 0D + {z € C | |z] = 1}. By dm({), we denote the normalized
Lebesgue measure on T.

1.3.1 Definition. On D X T, we define the Poisson kernel:

{+z  1—zP
P(z,{) :=Re =7— .
(-2 -2
Let u be a complex (i.e., in particular finite) Borel measure on T, then we define the
Poisson integral of u by

Pldul(z) = fT P(z, O)du(?).

Note that for (z,{) e Dx T

©0 k
=1+2;(§)

and the series converges uniformly for £ € T. This implies that for a complex (thus
finite) measure u we have

a0 —u(T)+ZZ [ etauo,

Hence [, $£du() € Hol(D) and P(z,) = Re
kernel is an approximate identity:

e de({ ) is harmonic. The Poisson

1.3.2 Lemma. The Poisson kernel has the properties:
(i) Forze Dand{ €T, it holds that P(z,{) > 0;
(ii) Forz €D it holds that [, P(z,{)dm(() = 1;

(iii) For every § > 0 and ¢y € T it holds that

lim sup P(z,{)=0
001g-gol>6
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Proof. (i): This follows directly from the definition.
(i1): By Cauchy’s integral formula, we obtain

1 §+zd§)
PG O)dm(0) =Re|— | £22%
fT (2. O)dm(D) e(Zm e

1 7 2 1
=Re(% fn(z‘z)"f)

=Re(2-1)=1.

(iii): If |z — &yl < 6 and |¢ — &y| = 6, then
-2 =10 —do+do— 2 > (6 —lz— &ob)?
and thus,

-oizs (6= lz—&l)?

as z — . a
1.3.3 Lemma. Leth € C (ﬁ) and harmonic in D. Then

-0

h(z) = f P(z, Hh(Q)dm(Q).

Proof. Define
"1 — |2
Z =
g( ) - |§ - Z|2

We have already seen that g is harmonic in D. Fix ¢y € T and € > 0. Choose ¢ > 0, such
that for [ — {y| < 6

hQ)dm().

I(0) = h(Lo)] < g

Moreover, choose €; such that for |z — {y| < §; we have that

sup P(z,0) < ——.
Sup RO < g

With this we have

] fT P, OROdm©) — W)
< fT PGz, OW() - P, OhGo)| dm(@)

=f P(z,0) |n(§) = h(o)l dm(d) +f P(z,0) |n(§) = h(&o)l dm({)
TNl ~Zol<6

TNl ~ol>6

€ €
<=+ 2||A| —na] T = €.
2 7 4kl

Hence g(z) is harmonic in D and for any ¢, € T,
lim g(2) = h(z).
zé]DJ

That is, g(z) is a solution of the Dirichlet problem with boundary function A|y. The
claim follows by uniqueness of the Dirichlet problem. a
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1.3.4 Theorem. Let f be a Caratheodory function. Then there exists unique a € R and
a finite measure v on D such that

f2) = ia+ f o). (1.8)
-z

Proof. For r € (0,1) define f(z) = f(rz) and h, = Re f,. Then h, satisfies the as-
sumptions of Lemma 1.3.3 and hence, with dv,({) = Re h,({)dm({), where m denotes
the normalized Lebesgue measure on dD. Since i, > 0 these are positive measure.
Moreover,

Iyl = f h()dm({) = hy(0) = Re f(0).
oD
Hence, the Banach-Alaoglu theorem provides us with a measure v and r,, — 1 such that

limv, = v

n—oo

in the weak* topology of (C(dD), || - ||«)*. Thus

Re f(2) = lim f, 2)
) 1-|z?
= Jim f o pln©

— 2l
= av({).
f & — 2P
Adding the complex conjugate, we get (1.8).
Uniqueness: It remains to show uniqueness: Let u be a complex measure and set

v = P[u]. We need to show that v = 0 implies u = 0. Choose f € C(T) and set u = P[f].
Since for ¢,z € T, P(r,z) = P(rz,{) it follows from Fubini that

fT U Q)dp() = fT 1@ fdm(z).

Since v = 0 also v, = 0. Note that in the proof of Lemma 1.3.3 we have shown that for a
continuous f:

| PIf1R) z€D
u(z) = { #2) ZeT

defines a continuous function on D. Thus it is uniformly continuous and we conclude
that lir/n [t — fllo = 0. Therefore,
r

f fdu =0, (1.9)
T

for every f € C(T). Recall that by the Riesz-Representation theorem C(T)* is the set of
all complex Borel measures on T. If we denote the functional defined by (1.9) with A,
then since Riesz Representation gives an isometry, we know that ||A,|| = |u|(€2). Thus,
we conlude from (1.9) that u = 0. a

1.3.5 Theorem. Let f € Ny. Then there exists unique a € R, 8 > 0 and a finite measure
o on R such that

L2 o). (1.10)
X—2Z

f(z)=a+ﬂz+f
R
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Proof. Let ¢ : C, — D be defined by

z—1
‘p(Z)—m.

Then
F(u) = —if(¢™" (u))

is analytic in D and Re F' > 0. Hence by Theorem 1.3.4 we find a finite measure v and
a € R such that

F(u) = ia + f ¢ s Zdv(g).

4
Hence
Q) = iF(p@) = —a+ (12D 4 f XD 1)
1 -¢(2) ao\1y £ — ¢(2)
Now we note that | )
+
D e @) = 2
1 -¢(2)

Moreover, a direct computation shows that

g+ _ 1+xz
P(x) = 9(2) x-z

Hence, with o = ¢! (Vlgpy(1)) we get

f £+e@ o= —i f 142 o).
aov(1y ¢ — ¢(2) R X—2Z

The proof has shown that @ = —a and 8 = v({1}).

The steps can be reveresed. Starting with a representation (1.10). We get an integral
representation of a Caratheordory function of the form (1.8) witha = —a and v = 6 +
vx0. Hence, uniqueness, follows from the uniqueness claim in Theorem 1.3.4. a

1.3.6 Remark. Instead of splitting up the point mass at oo it will also be convenient to
consider ¢ : R — T and to consider 0 = ¢;!v = & + B6|). In this case the integral
representation reads as

f(z)=a+ﬁlx+zjdaw(x). (1.11)
B

1.3.7 Corollary. Let f € Ny. Then there exists unique @ € R, 8 > 0 and a positive
measure p on R with f 9

pa(x)
T <@ such that

X
1+ x2

f(z)=a+,Bz+fL— du(x). (1.12)
X—2

Proof. For f € Ny, let a, B, o be the data from the integral representation (1.10). Define
1 by du(x) := (1 + x*)do(x) and note that

1 X _l+xz 1

x—z 1+x2 x—z 1+x2

The claim follows. a
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1.3.8 Proposition. Let f,,, f € Ny and @y, By, 05, 0y the data from the integral repre-
sentations (1.10), (1.11). Then the following are equivalent:

(i) There exists a D C C, which accumulates in C,, such that for all z € D f,(z) —

f@);
(ii) Uniformly on compact subsets of C,, we have f, — f;
(iii) @, — a, and o= — o in the weak* topology of C(R)';

(iv) a, = a, and 0,(R) + 8, — o(R) + B and o, — o in the weak™ topology of

CoR)’;

Proof. (i) < (ii): This is already shown in Corollary 1.1.6.

That (iii) < (iv): This follows, since every f € C(R) can be written as a sum of a
constant and a function which vanishes at co. .

(itiy = (i): This is clear, since for every z € C,, (x 1;%’?) e C(R).

(if) = (@ii): This will follow from uniqueness of the data and compactness of No.

Write |
£1@) = an+ ﬁ T s ()

R X2

and similarly f. Note that f,(i) = a, + ic°(R).Thus, we conclude that a,, — @ and o
is a bounded sequence of measures. Thus, the Banach-Alaoglu theorem provides us
with a subsequence (o which converges to some finite measure p on R. It remains to
show that p = 0. Assume the contrary. Then, we define

s =at+ ﬁ Lt o)
R Z

X —

and uniqueness of the integral representation implies g # f. On the other hand, since
a, — aand Ty =P, We conlude from (iij) = (ii) that f,, — g. A contradiction. [

We have already seen in the proof above that
f() = a+ic®R) = a + i(B + c(R)).

Thus, by taking real and imaginary part, we can extract e and 8 + o(R). However,
extracting 3, requires to take a limit.

1.3.9 Proposition. Let f € Ny with representation (1.10). Then

B = lim W) (1.13)
y—oo gy

Proof. In order to show (1.13), we need to show that
1 1+ xiy

y—oo Jp iy x — iy

do(x) = 0. (1.14)

The integrand converges to 0 pointwise as y — oo, so (1.14) follows from dominated
convergence (having in mind that o (R) is finite) with the bound

L1+xiy| 1 y1T+x%2 1+ x2%y? <1
iy x—iyl 'y 242 N ’

which is valid fory > 1. a
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1.3.10 Proposition. Letr f € Ny. Then there exists a finite measure p on R such that
1
f@= | ——dux), (1.15)
X—2Z
if and only if there exists C > 0 such that for all z € C,
C
lf(2)] < Tma (1.16)
mz
Proof. If f is of the form (1.15) and u is finite then

|f(z)|<f| d()_“(z)

and the claim follows with C = ,u(R)
Conversely, assume that |f(z)| < = Im
Then we have

. By Proposition 1.3.9, 8 = 0. Write f as in (1.12).

z°

Im f(iy) = f dﬂ(x)

Monotone convergence implies that

2
lim yIm f(iy) = lim f L du(x) = u(®).
y—o00 y—o00 X +y

Thus, by (1.16) we conclude that u(R) < C < oo and therefore, XL_Z,
we get

€ L'(R, u) and

X
1+x2

1 1
@ =a- [ Fgdu+ [ i =y+ [ duto,
+ X X—Z X—2Z

Dominated convergence and (1.16) imply that y = lim,_,., f(iy) = 0. a

1.4 Stieltjes inversion

We have already seen in that the data in the integral representation of a Herglotz function
f is uniquely determined by f. However, in many cases it is useful to know, how to
recover this data from f. We have already seen, that if f is written as

1
f(Z)=a/+ﬁZ+f(x—_Z— - 2)d,u(x) (1.17)
then we have _
a=Ref(), B= l_}r?o M

iy
In fact, also the measure can be recovered from f. The formula is known as Stieltjes
inversion formula. We start with a Lemma:

1.4.1 Lemma. Let f be a Herglotz function, with a, B, i as in (1.17). Then f defines an
analytic function on C \ supp y, which obeys f(z) = f(2).
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Proof. For any 1 < R < oo and z such that dist(z, supp u) > R™!, |z] < R, it holds that

L) e, (1.18)

xX—z
Indeed, if |x| > 2R, we have

1+ xz
xX—2z

1+ Rlx|]  2R|x|
< < =
x| =1zl — [xl/2

and for x € supp u N [-2R, 2R], we have

1+
‘ I < R+ |xIR) < 4R3.

u(
1+x xX—2 I+x2 7 x—z 1+a2° .
such z and defines a continuous function on C \ supp 1. By Morera’s theorem, it suffices

to show that the integral over every null-homotopic curve y in C \ supp ¢ vanishes.
Fix such vy. Since rany is compact, we find R such that for any z € rany we have
dist(z, suppu) = R™! and |z] < R. Thus, by (1.18) we can apply Fubini’s theorem to
conclude

1 x 1 B
fva(X—z_ 1+x2)d'u(x)dzszfy(x__Z— 1+x2)dzd,u(x)=0.
d

1.4.2 Theorem. Let f € Ny. Then the measure 1 in its integral representation can be
reconstructed via the Stieltjes inversion formula

Since fd—xz) <ocoand L — 2 = 2 _L the integral in (1.17) is convergent for

% (u((a, b)) + u(la, b)) = ll_r}r(% 711 fab Im f(x + ie)dx. (1.19)

Proof. By Lemma 1.4.1 we can assume that
fl@)= fiﬂ—_(xz) H(R) < oo, (1.20)
Indeed, for general f and fixed R > 0, we can write f(z) = dfT(;‘) + g(2), where fi

coincides with ¢ on subsets of (—2R,2R) and g is a Herglotz function whose measure
is supported on R \ [-2R, 2R]. Hence, by Lemma 1.4.1, for (a, b) C [-R, R], the limit
in (1.19) for f ";"T(XZ) and for f are the same. Since also the measures coincide there, it
suffices to consider f as in (1.20).

Tonelli’s theorem shows that

lfblmf( +ie)d 1f _du(nd
- X le)yax = — —_— X
T Jg 7Jp (x—10)2+¢€ H

1 (* €
_L;fa —(x_t)2+62dxdp(t).

1 € 1 bt a-t\ 1
; L mdx = 7_{ (arctan T — arctan T) e E (X[a,h]([) _X(a,b)(t))

Pointwise, we have

as € — 0. Since 0 < arctan I’T_t — arctan ”T_’ < n, the result follows from dominated

convergence. 4
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As a corollary, we get

1.4.3 Corollary. IfIm f can be continuously extended to C,. U (a, b), for some interval
(a,b) C R, then y(pdu is absolutely continuous with density %X(a,b)(x) Im f(x).

It is also interesting to compute point masses of y.

1.4.4 Lemma. For any xy € R we have
u({xo)) = lirré(—ie)f(xo +i€) = lir%elmf(ie). (1.21)

Proof. As in the proof of Theorem 1.4.2 it suffices to consider f of the form (1.20).
Thus, in order to prove the first equality in (1.21) it remains to show

. —i€
u({xo}) = 1133 mdﬂ(x)-

Pointwise, we have
lim— € -
-0 x — (xg + i€) = X
Since |x—(;éiie)| < 1, the claim follows by dominated convergence. Now the second
equality in (1.21) follows by taking the real part of the first one. a
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Chapter 2

Orthogonal polynomials and
Jacobi matrices

Assume that we are given a probability measure, u, supported on R such that for all

n € Ny we have
flxl”du(x) < o0,
R

To such a measure, we can associate a sequence

Sp = Su(u) = fxndlu(x)
R

Such a sequence will be called the moment sequence associated to yu. Assume for a
second, that y is not a pure point measure supported on finitely many atoms, that is,
#suppu = oo. Let

So 51 52 Sn—1
S1 $2 53 Sn
H, = .
Sp—-1 Sn Sn+l to S$2n-2

be the Hankel matrix associated to s,. Then a simple computation shows that for
&=(co, C15.-., Cy—1) # 0 we have

._‘
._‘
._

n— n—1

n—1 n—
f*an = l+jcl f
R

j=0 i=0 Jj

n—

Iy
[=}
1§
[=}
Iy
f=}

i

(2.1)

where P(x) = 27:_01 c;x'. That is, H, is positive definite. We will encounter, that this is a
characteristic property of moment sequences. This means, given (s,)ney, € R such
that H, > 0 for all n (and sy = 1 in case we assume u to be a probability measure), there
exists a measure with this given moment sequence. In the first sections we will discuss
existence and uniqueness for this problem. Along with this, we will encounter many
properties of associated orthogonal polynomials. We start with proving existence of a
measure for a given moment sequence. Given a moment sequence, it will be helpful
to always have in mind that it should be given by s, = fR x"du(x). All the definitions
below are motivated by this identity.

15

n—1
X cidu(x) = f Z oyl Z Xeidu(x) = (P, Pz > 0,
R%520 i=0
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2.1 Moment sequences

We start with the definition of a (non trivial) moment sequence. The name will be
justified later in this chapter.

2.1.1 Definition. Let s = (s,)uen, € RM with 5o = 1. To s we associate the Hankel
matrix

50 S1 52 et Sl
S1 52 53 T Sn
H, =
Sn—1 Sn o Sh+l e S$2pn-2
and the Hankel determinant
D, :=detH,.

The sequence s is called a (non-trivial) moment sequence, if for all n € N
D, > 0.

2.1.2 Remark. The addition non trivial” comes from assuming that all D,, is strictly
positive. Note that if dimker H, > 1 for some n € N, then this holds for all m > n. In
fact, if

mg = inf{n € Ny | dimker H, > 1}

then we can associated a measure u with the given moments and y will be supported on
mo — 1 atoms. For now we want to exclude this trivial case. The reason for this is, that
if u is supported on n atoms, then by taking P the polynomial of degree n with zeros at

these atoms, we see that ||P||iz(ﬂ) = [IP(x)Pdu(x) = 0; see (2.1).

Let # denote the set of polynomials with complex coefficients. With P,,, we denote the
subspace of polynomials of degree at most 7.

2.1.3 Definition. Let ¢ = (t));e, € RY, 1, = 1. To  we associate the linear functional
in P* by

O(P) = O[A(P) = ) citi
i=0
where P(z) = Y c;z'. We say that @[1] is positive, if P > 0 on R and P # 0 implies
that ®[¢](P) > 0.

We say that ®[7] is positive, if P > 0 on R and P # 0 implies that ®[7](P) > 0. For
Pe®P,P=Y",cz we introduce the notation

Plo) = ) &7 = P@).
i=0
Note that P = P* if and only if P is real. This can either be stated by saying that
P(x) € R for x € R or by saying that P has real coefficients. Let R € P, R(z) = Y1 ¢iz'.
Let us compute

n

Dl Z C_fzj] ) Z Z ciTitin; = € Huné,  (22)

i=0 7=0 i=0 j=0

O[](RR*) = @[1]

with & = (cg,..., ¢,) and H, is the Hankel matrix for the sequence (tj)§:0' This
motivates the following factorization:
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2.1.4 Lemma. Letn € Ny, P € Py, has the property that P(x) > 0 for x e Rand P # 0,
if and only if there exists R € Py, R % 0, so that P = RR*.

Proof. That RR* has the desired property is clear. Let us thus start with P € P,, as
above. Note that the assumption in particular implies that P* = P. From this it follows
that complex zeros can only occur in conjugate pairs. Positivity on R implies that real
zeros must be of even degree. We conclude that there exist zy, . ..,z, and » > 0 so that

PR =r ]_[(z — 2@ - %)
k=1

Then R(z) = r [Tj-,(z — z) gives the desired factorization. Q

Note that the assumption on P, that it is of even degree follows also from non-negativity
onR.

Together with (2.2), we can now make the connection between moment sequences and
sequences inducing positive functionals.

2.1.5 Corollary. s € R™ with so = 1 is a moment sequence, if and only if ®[s] is a
positive functional.

We can use @ to define an inner product on . Let s be a moment sequence. For
P, Q € P define
(P,Q); := O[sI(PQY). (2.3)

2.1.6 Proposition. (-,-), defines an inner product on the vector space P.

Proof. Let’s write P(z) = Y.7_, a7, 0(2) = Z;"zo bi7'. Then a direct computation shows

that -
(P,Q) = Z Z aibjsiyj.
i=0 j=0
From this, linearity and (P, Q) = (Q, P); is clear. That (P, P); > 0 and (P, P); = O if
and only if P is zero, follows from the fact that s is a moment sequence. a

We can thus apply the Gram-Schmidt orthogonalization procedure to the sequence
@), € P with respect to the scalar product (-, -);.

n=
2.1.7 Definition. Let s be a moment sequence. Then we denote by p,(z) = pn(z, s) the
nth orthonormal polynomial with respect to the inner product (-, -),. Likewise, we denote
by P, the nth monic, orthogonal polynomial. Let y, denote the leading coefficient of p,,

ie.,
1

=—>
<PmPn>s

2.1.8 Remark. It is important to mention, that D,, being strictly positive, guarantees that
dim((Pm <', >v)) =n + 1 for all n.

There is an explicit formula for p, in terms of Hankel determinants.

Yn 0.

2.1.9 Lemma. The orthonormal polynomials are given explicitly by

So 81 52 t Sn
| S1 $2 53 o Sn
pn(z) = ———=det
VDnDn+l
Sp-1 Sn Spe1 S$2n-1

1 Z ? Z
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Proof. 1t follows from the definition that

[ D, ,
pn(2) = D7 +0, 0€Pu.
n+l1

Thus, using that (z/)* = z/, we need to show that

. 0, j<n
Q(pu(2z) =1 5o :
D_,,’ J=n.
From the definition of p, and ® it follows that
S0 S1 S2 ce Sn
1 S1 52 53 o Snwd
O(po(2)7) = ——— det
VDnDn+1
Sn—1 Sn Sn+1 e S2n-1
D A A Y Y
From this, the claim is clear. a

2.1.10 Definition. Let a,.; > 0,b, € R, for n > 0. The formal difference operator”
acting on sequences (Y )nen, by

(jy)n = Qp+1Yn+1 + bnyn +apyn-1, n== 1 (24)
(Iy)1 = ary1 + boyo.

is called Jacobi operator.

It is sometimes convenient to visualize J as as an infinite dimensional three-diagonal
matrix of the the form

bo a 0 0 0
aq b] [25) 0 0
I=10 a b a 0

0 o
2.1.11 Remark. At this stage it is not justified to call this an operator. We will see that

J will act after specifying the correct domains (possibly unbounded) as an operator on
(No).

The connection to orthogonal polynomials is the following:
2.1.12 Proposition. Let s be a moment sequence. Define for n > 0

_ ||Pn+l||s _ <ZPn,Pn>s

Ap+1 = n — eR.
1Pulls ’ [1PalI3

Then for the monic orthogonal polynomials it holds that

2Pu(2) = Ppi1(2) + byPu(2) + @3Py1(2), n 21
zPo(2) = P1(2) + boPy(2).
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For the orthonormal polynomials we have

2Pn(2) = i1 Pns1(2) + bppp(2) + appp-1(z), n21 (2.5)
zpo(2) = a1 p1(2) + bopo(2).

In particular
n

1Pl = | | a

J=1

Proof. We consider only n > 1. Let j < n—1 (if n > 1) then deg(zP;(z)) < n.
Using orthogonality and the fact that (zP,,(2))P* (z) = (zP(2))Pn(2) = Pu(2)(zPn(2))*, it
follows that

(2Pn(2), Pj(2))s = (Pn(2),2Pj(2))s = 0.

Hence we get that
2Pp(2) = Ppy1(2) + [;nPn(Z) + cpPro1(2)

for by, c, € R. Let us check that b, = b, and ¢, = a>. We have
BallPally = (2Pu(2), Pa(2))s-

For ¢, note that zP,(z) — P,+1(z) is a polynomial of degree at most n. Thus, taking the
inner product with respect to P, yields

(2P(2), Pus1(2))s = 1Pt

Therefore
2
e = (zPn(2), Pr-1(2))s _ (P(2), 2Pu-1(2))s :( [1Pnlls ) _ 2
! P11l 1Py l3 1Pp—1lls "
Passing to the recursion for the orthonormal polynomials is now an exercise. a

We have thus, defined a map from the set of positive sequences into the set of Jacobi
operators. Our next goal is to show that this map is in fact a bijection.

Let us start with a Jacobi operator J. We can define the sequence of polynomials p, by
P02 =1, pi(z) = % and forn > 1

1

n+1

Pn+1(2) = ((z = bo)pn(2) — anpn-1(2)) .

Note that this in particular implies that deg p,, = n.

2.1.13 Lemma. We have P, = span{pi | 0 < k < n}. Moreover, if P = Y}}_, cipi(2)
with c,, # O, then this representation is unique.

Proof. We prove by induction that this is true for (z"),ey,. The induction start follows
from po(z) = 1. Now assume that 7" = 7’20 ¢jp(z). Then we have

m m

=z = Z cjzpj(z) = Z cj(@jr1pjr1(2) + bjpj(2) + a;pj-1(2)).
70 =0
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We also show the second claim using induction. We need to show that if for n € N
Sco CkPi(z) = 0, then ¢, = 0 for all 0 < k < n. Clearly, this holds for n = 0. Now

assume that
n+l n

0= kz_(; Ckpk(2) = Apy1 Prs1(2) + kZ(; ckpi(2).

Since deg pn+1 = n + 1 and deg )3}, cxpi(z) < n, we conclude that ¢,+; = 0 and the
induction hypothesis implies that ¢, = 0 for 0 < k < n. a

Our goal is to define a functional ® on P with

D(Puph) = Oum.

It is a priori not clear that this is well defined. Let us therefore, for R = }}_, cxpr and
0 =%""yd;jp;j define

min{n,m}

QR.Q) = . cdy.

k=0
It is easy to see that

O(R, Q) = D(Q.R)
and that for A € Cand R,R,,Q € P
O(AR| + R;, Q) = AD(R;, Q) + D(R,, Q).

2.1.14 Lemma. Let R; = Y c;pi. Qi = DI djpj, for i = 1,2 and assume that
RlQT = Rng. Then it holds that

DR, Q1) = DRz, 02).

Proof. We first show the claim for Ri(z) = zpi(z), 01(z) = pj(z) and Ry(z) =
(@), 01(z) = zpj(z). We show the claim for j,k > 0. The case j = O ork = 0
can be included by setting below a_; = 0. Recall that

zpi(2) = air1pir1(2) + bipi(2) + a;ipi-1(2).
Hence,
O(zpi(2), pj(2) = As10ke1,j + bidij + axdi s
D(pi(2),2p(2) = @js10kjs1 + bSOk + ajSk j-1,

which shows that ®(zpi(2), p i(2) = O(p(2), zp i(z)). Using linearity, we conclude that
for R, Q € P it holds that ®(zR, Q) = ®(R, zQ). Note also that for A € C it holds that
D(AR, Q) = (R, 1Q) and ARQ# = R(1Q)*. Now writing R; Q; as a product of its zeros,
this and linearity allows us to move factors between R and Q and the claim follows. [

Let P = RO*, then due to Lemma 2.1.14 we can define
D(P) := DR, Q).

Note that we always have the trivial factorization P(z) = P(z) - 1.
We can now define s; associated to J by

si = D). (2.6)
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2.1.15 Lemma. Let J be a Jacobi matrix, ® the associated functional and s; = ®(Z°).
Then (sy)ken, is a moment sequence.

Proof. Let P(z) = Y., ¢iz'. Then we have
(D(PP#) = Z Z Cl'C_j(D(ZHj) = Cic_jsi+j-

i=0 j=0 i=0 j=0

On the other hand, let
P=) &pi
i=0

Then by definition of ®, we have
(PP = > Il
i=0

Thus, if P # 0 we have 3.7, Z?:o ¢iC;si+j > 0 and we conclude that (sx)ken, is a moment
sequence. 4

2.1.16 Theorem. There is a bijective correspondence between the set of Jacobi matrices
and the set of moment sequences.

Let us consider J as an operator acting on £2(Ny). In general J can be unbounded.
However, there is a clear criterion, when it is bounded.

2.1.17 Lemma. Let J be a Jacobi matrix with coefficients ay1,by. Then J is bounded
if and only if

sup(lag| + |bi|) < oo. 2.7
keNy

In this case J defines a self-adjoint operator on £*(N).

Proof. We first show that boundedness of J implies (2.7). Let ¢, € £>(Np) denote the
standard basis in £2(Ny), i.e., (en)r = Onk- Then we have

(Jen,en_1) = a,, <(Je, e,) =Db,.

Thus, it follows that
a, <V, by < VIl

Conversely, let y = (y¢) € £2(Np) and @ = sup |a,|, B = sup |b,|. Then we have
2
Van+l Van+1yn+l >

|(Jy)n|2 = |an+1yn+l + bnyn + anyn—1|2 = ‘< \/b_n s ‘/b_nyn
Van Vapyn-1

< Qa + B)@lypsil’ +Blyal® + @lyu-iP).

Taking the sum of all n shows that ||Jy||> < 2a + 8)?||y||*> and thus

I71I < 2 sup |aps1| + sup |by.
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It remains to show that J is self adjoint. We need to show that (Ju, v), for all u, v € £>(Ny).
We first check that this holds for the basis vectors e,;:

b, ifn=m,
ifm=n+1,

<Jemem>:<em-]em>: i 1 men
a, ifn=m+1,
0 |[n—m| > 1.

By linearity it thus holds for all vectors which are compactly supported and then by
continuity for all u, v € £2(Ny). a

Recall that (p,,) satisfies the recursion

an(Z) = an+1pn+l(Z) + bnpn(z) + anpn—l(z)~

It is convenient to bring this into matrix form. For (z,a,b) € C X R.¢ X R, let us define
the one step transfer matrix by

S

7—

) 2.8)

N
[« N

A(z,a,b) := (

Then it holds that

Pr+1(2) 1 _ @\
(—an+1 pn(z)) = A i1, bn) (—anpn-l(z)) '

This holds also for n = 0, if we set p_;(z) = 0. That is, if we start with the initial
condition
p1(2) 1
= A(z, a1, b .
(—alpo@) @ bo) (0)
Tn(Z) = A(Za Ap, bn,l)A(Z, ap-1, bn—Z) oo A(Z, ai, bo) (29)

then we clearly have that
DPn(2) 1
=T, .
(_anpn—l (Z)) n(Z) (O)

It will be convenient to also introduce the second solution of the system.

If we define

2.1.18 Definition. Let J be a Jacobi matrix. Then we define the orthonormal polynomi-

als of the second kind by
qn(2) 0
=T, .
(—am(z)) @ (1)

1
q1(z)=—, qo(2)=0
a

Setting n = 1, we get

and all others are given by

2Gn(2) = Ans1qn1(2) + bpgn(2) + angn-1(2). (2.10)

In particular, we see that degg, = n — 1.

! Although it is standard to define the transfer matrix so that there is no minus sign in the second entry, there
are good reasons for this choice. We will encounter some in the course of the lecture.
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2.1.19 Lemma. Let J be a Jacobi matrix and ® the associated functional. Then we
have forn > 0
n(2) — pu(D)
%@=®@——ﬁ—.

z—t

Proof. Note first that @ is a polynomial of degree n — 1 in z and ¢. Thus, we can
apply @ with respect to the variable . The identity is easy to check for n = 0, 1. For
n > 1 it thus suffices to check that §,(z) = @, (%) satisfies (2.10). We have

~ ZHZ_le(t)+tVlt_tn(t)
zq,,(z)=<l>t(p() p Pn(t) —1p )
-1
_y (an(Z) - tpn(t))
z—t
= Ap41G0(2) + DpGn(2) + ndn-1(2),
where for the last step we used the recursion for zp,(z) and #p, (). a
Let us note that
Pa(2) 4n(2) )
T.(z) = 2.11
© LWM@ 11 (2) @1D
2.1.20 Corollary. The following Wronskian identity holds for alln > 1 and z € C:
1 = a,(pn-1(2)qn(2) = gn-1(2) pn(2)) (2.12)
Proof. Due to (2.8),(2.9), det T,,(z) = 1. Thus, the claim follows from (2.11). a

2.1.21 Definition. The Christoffel-Darboux kernel is given by

n—1

Kizw) = ) pj@p;m,  zweC.
=0

Due to Theorem 2.1.16 it is the same whether to start with a moment sequence of a
Jacobi matrix. In any case we can associate a functional, which then defines an inner
product (-, -)s on P by (2.3). Although (%, (-, -);) will not be complete, this is obviously
true for (P, (-, -)s). Thus, (P,,(:,-)s) is a Hilbert space of functions on C. As P, is
finite dimensional, point evaluation is a continuous functional and hence, (P, (-, -);) is
a reproducing kernel Hilbert space. Let us recall the definition

2.1.22 Definition. Let Q be a set and H € C® be a Hilbert space with inner product ¢, -).
If for every w € Q, the point evaluation functional at w is continuous, then (H, (-, -)) is
called a reproducing kernel Hilbert space. In this case, there exists K¢/(z, w) : QxQ — C
such that

o Ywe Q Ky(-,w) € H,
o VfeH weQ, f(w)=(f,Ku(,w)).
The function Ky, is called the reproducing kernel of .

Since p; forms an orthonormal basis for (P, (-, -);), it is easy to check that K, (z, w) is
the reproducing kernel for (,, (-, -);). We will prove a convenient formula for K,,.
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2.1.23 Lemma. The following identity holds for z,w € Candn > 1:

n—1
B . (= p@pw) g2 pe(w)
T =T, w)' JT,(2) = (2 W),Z;(pk s ). 2.13)

Proof. Since T,(z) = A(z, an, by—1)T,-1(z) we have

J - Tn(w)*JTn(Z) =J- Tn—l(w)*‘]Tn—l(Z) + Tn—l(W)*JTn—l(Z) - Tn(w)*JTn(Z)
=J- Tn—l (W)*JTn—l (Z) + Tn—l (W)*(J - A(W, Ap, bn—l)*JA(Z» Ay, bn—l ))T -1 (Z)

A direct computation shows that

Ty 00 = A0y TAG by D) = T (57 )10

— (Z -w (pn—l (Z)Pn—l(W) Qn—l(Z)pn_l(W)
Pn-1 (Z)Qn—l (W) qn-1 (Z)qn—l (W)

Thus, the claim follows by iterating this identity. Qa

2.1.24 Corollary. Forn > 1, T\,(z) is a J contractive matrix function.

Proof. We need to show that for z € C,, —i(J — T\,(2)*JT,(2)) > 0. This follows since
(J = Tu(2)" JTx(2))/(z = 2) = =i(Tu(2)"JT,(2) — J)/(2Im ) and

(mw@ qk(z)@) _ (mz)) (pk<z>)* 20
P@Qu@ @) \a@)\a@) ~

Conjugating (2.13) with (w, 1)7 yields:
2.1.25 Corollary. Forw e C,ze€ C\Randn > 1 we have

n—1

mz > wpe@)+qu@) = Imw-a, Im (wpa(2) + gu(@)FPr 1) + 4a1(2)) - (2.14)
k=0

Looking at the 1-1 entry of (2.13), we get the Christoffel-Darboux formula:

2.1.26 Proposition (Christoffel-Darboux formula). I holds that

Pn(@)Pn-1(W) = pp_1(2) pu(w)
z—-w

Kn(Z, W) = ap (215)

We can now make the first connection to Herglotz functions
2.1.27 Corollary. p,(z) # 0 for z € C\ R. Moreover, if we define

Pn(2)

n(z) = —————.
8 an+1pn+1(z)

Then g, € Ny. As a consequence the zeros of p, are real and simple and zeros of p, and
Pn+1 interlace.
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Proof. Letz € C\R. Then z —z = 2iImz # 0. Hence, if p,(z) = 0, we get

1 Pust@Pn(@) = pu@puri @) _

= 0
-2

Ky11(2,2) = ans
which is a contradiction. The same argument shows that p,, and p,,; cannot vanish
simultaneously.

Hence g,(z) is analytic in C,. Moreover, for z € C,

n(z)nz)_ nZn(Z Im nZ)
0 < Kps1(2,2) = ey 22D = Pil@Pre @ _ 1M (D)

-z Imz
Thus, g, € Ny. Write p,(z) = ?:1 vn(z — &)). Due to the integral representation for g,,

there exists o; > 0 such that
n

wO=D
J

J=1

Hence, g, is increasing between A; and 4,1, giving exactly one zero of p, between
consecutive zeros of p,.i. Thus there is exactly one zero of p,.; in each (¢;,&}.1),
which shows the interlacing property. a

Note that m,, is normalized so that

1
&n(2) ~ _E, 7

which is the same as
n+l

ZO’I‘I 1.
j=1

Another family of Herglotz functions will play an important role. Note that from (2.13)
it follows that T,,(z)~" is J-expanding. Thus, from Lemma 1.2.4 it follows that for 7 € R,

_ qn(2) + a,7q,-1(2)

my(2,7) 1= Ty(2) ™ * 7 = (2.16)
pn(Z) + anTpn—l(Z)
is a Herglotz function. The functions
Pn(Z, T) = pn(z) + anTpn—l(Z)’ Qn(Z, T) = Qn(z) + anTanl(Z)
are called qguasi-orthogonal polynomials. For T = oo, we set p,(z,0) = —a,p,-1(2),

qn(z, ) = —a,qn-1(z). We collect their most important properties below.

2.1.28 Proposition. Let s be a moment sequence, T € R. Then the quasi-orthogonal
polynomials have the following properties

(i) All the zeros of a quasi-orthogonal polynomial are real and simple;
(ii) The zeros of pn(z,T) and q,(z, T) interlace;
(iii) Fort e R\ {0}, and j < n— 1, we have
Di(palt, D) = 0;

(iv) We have
D,(palt, 00" = 0;
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Proof. (i): By definition we have

~1[T)[~4n(z,T)
T,(z)"" .
@ (1) ( Pn(2,7) )

Therefore, p, and g, cannot vanish identically. Since m,, is a Herglotz function, which
is not constant 0 or oo, it cannot vanish or have a pole at C,..

(ii) follow as in Corollary 2.1.27.

(iii) and (iv) follow from the definition and the fact that p,(z) are orthogonal polynomials
for @. a

2.2 Quadrature formulae

Remember the rectangle rule with the left endpoint

Q5"(f) = (b - a)f (@)
which is exact for constant polynomials and the trapezoid rule

f(@) + f(b)
_a)T

which is exact for linear polynomials. Note that if we consider the midpoint rule,

o) = b

0= b-af 5]
we can integrate also linear polynomials exact with only one evaluation point. Gauss
suggested that an integration scheme is optimal, if it is exact for a certain degree of
polynomials and we will see that the above can be obtained for arbitrary number of
sampling points and degree of polynomials. That is for n interior sampling points we
are able to integrate exactly polynomials up to degree 2n — 1.

2.2.1 Lemma (Lagrange interpolation). Let zy,--- ,z, and ay,- - - , @, be complex num-
bers. Assume that all the z; are distinct. There exists a unique polynomial P € P,,_,
such that

P(zj) = a;. (2.17)
It is explicitly given by

P(z)—zalnzi-zk_Z%Q’(Z;‘)(Z‘Z-/’),

=1

where Q(z) = A H;le(z —z;) (here A € Cis arbitrary).
Proof. We will omit the proof. a

2.2.2 Proposition. Let @ : P — C be a positive functional and T € R. Let p,(z,T) be
the quasi-orthonormal polynomial constructed from ® and let (.f‘,-);f:1 be the zeros of
Pn(z, 7). Then

Y DPa(t,7)
MO 4 e na-6)" 2.18
(R) jz; (p;(«fj,r)(t_gj)) &) 2.18)

forany R € Py,_». If T = 0, (2.18) also holds for R € P,
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Proof. Let p,(z) = pa(z,7) and let R € P,_». By polynomial division we can write
R=py:S+T,whereS € P,»,T € P,_;. Using orthogonality of p, . and pﬁ,T = Pnrs
we get

®(R) = D(posS) + D(T) = O(T) 2.19)
Dn(t)

= N 70, 2.20

Z @)ﬁramAm) (220
Dn~(2)

= >R . 2.21

Z(@ ﬁramAm) (@21)

where we used Lagrange interpolation in the second line and the fact that R(&;) = T'(£;)
for the last line. If 7 = 0, then we can choose R € P,,_1, i.e., S € P,_; and still
O(preS) =0. (|

There is an alternative expression for the coefficient in the interpolation forumla in terms
of the Christoffel-Darboux kernel

2.2.3 Lemma. In the setting of Proposition 2.2.2 we have

( pn(t) ): Qn(fjv‘r) _ 1
\pLEpt—¢€)) ~ puéit)  Kii(,6)

In particular, these coefficients are positive.

Proof. Since p,(¢j,7) = 0 we have

o, (p,,(t, T)) _o, (pn(t, 7) — pa(éj,7)
t-¢&) t-¢&)

) = (&}, 7).

Hence

( 0] ):%@ﬁ
\pEpa—¢p) puépn’
On the other hand, using that p,(¢;,7) = p,(§;) — a,Tpa.—1(£;) = 0, and hence, a,7 =

(X))

—~, we see that
Pn-1(x5)

Qn(é:j’ T) _ Pn-1 (gj)‘Zn(fj) - pn(é:j)qn—l (gj)
PLEnRT)  pa1EDPLE)) — puEppl_ (€)'

Recall that by (2.12) we have 1 = a,(p,-1(€))gn(&;) — gn-1(€;)pn(&;)) On the other hand,
by the CD-formula (2.15)

Ky 1(€5,€)) = an(p,(EDPn-1(E)) — Pl (E)DPn(E))).

Hence,

An(Pr-1€)gn(&}) — pu(€)qn-1(£)) _ 1
an(Pu1ENPLEY) = puEPp._(€))  Ku1(€1,€))
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2.3 Existence of a solution for the Hamburger moment
problem

At this place we are already able to show that (s,).eny, being a positive sequence is
necessary and sufficient to have a non-trivial solution to the Hamburger moment problem.

2.3.1 Theorem. Let (s,),en, € RYo. Then there exists a real measure y, which is not
supported on finitely many points such that for all n € Ny

sn:fx"du(x),
R

if and only if (S,)nen, IS a moment sequence.
From the introduction we already see that the only thing to prove is the ”if”” direction.
2.3.2 Lemma. Let (sy)pen, € R be a moment sequence. Fix n € N and define

4z, 7)

i) =

Then my(z, 1) is a Herglotz function and if

Hnz = Z C;0¢;
&jlpn(€,1)=0

is the measure in its integral representation, then it holds that

§;= ijd/llu‘r(x)’ 0< .] <2n-2.

If T =0, this also holds for j = 2n — 1. In particular, 1, ;(R) = 59 = 1.

Proof. We have already seen that m,(z, 7) is a Herglotz function. Thus, the integral
representation is given by

2(2,T) Cj 1
—Z o= > 3 iz = | o,
e &lpa(é;,0)=0 =/

where
qn (‘(;: J» T) _ 1

p;z(fj’ T) B Kn—l(é:j’ fj) ’

where we used Lemma 2.2.3 in the last step. By definition of the function (2.6) we have
®,(f%) = s¢. On the other hand, for every polynomial R € P,

cj= }1_1’)13 mn(fj + ly)(é:] - (é:j + ly)) =

Pn(t,7)

O[R] = o (Pt
" fflp;é,-)m (P§1(§_;,T)(t—§j)

)R(fj)= D cRE) = f ROOdpn().

&ilpn(&;,1)=0

Thus, this holds in particular for the monomials (x/ )?:62. The changes for 7 = 0 are
obvious. a



2.3. EXISTENCE OF A SOLUTION FOR THE HAMBURGER MOMENT PROBLEM?29

Our general strategy is to take a weak-* limit of the sequence u, and show that this
limit has all the right moments. Some caution is required at this place, since x/ are not
bounded functions on R, so convergence of y, does not imply directly convergence
of the moments. We therefore prove the following lemma. Let us first clarify what
convergence of measures we have in mind. All u, are measures on R. We can extend
them to measures on R by setting u,({c0}) = 0. Then we can identify them as elements
of (CR), || - lleo)*. We will understand convergence of measures in the corresponding
weak-* topology.

2.3.3 Lemma. Let u, be measures supported on R and (s,)nen, a moment sequence.
Assume that

ijdpn(x)zsj 0<j<2n-1.

Then, there exists a subsequence u,, convergent to a measure (L with

ijd,u(x) =sj, J€Np.

Proof. Let m, be as in (2.3.2) for some fixed choice of 7. Consider u, as elements of
(CR), || - lleo)*, extended to R by s,({co}) = 0. Since sy = 1, we have ,(R) = u,(R) = 1,
and thus are precompact by Banach-Alaoglu. Thus, we find a subsequence and a
measure u such that

fmp =

where the limit is taken in the weak-* topology of (C [®R), Il - llo)*. That is integrated
agains continuous functions on R. Note that in principle mass could be lost to co. We
first show that this is not the case. Since for all n > 2

fxzd#n = 852,

x2 S
fx |>Rduns f i () = 1722

Let fr be a function on R, which is constant 1 on R \ [-2R, 2R], constant 0 on [—R, R]
and linearly interpolated in between. Then we clearly have

fﬁ Fe(O)dun(x) < f| o< 1%

we get for any R > 0,

On the other hand
lim ﬁ SR () = ﬁ Se()du()
k— o0 R R

and thus

S
f@ fr(0)du(x) < 1722.

Sending R — oo shows that u({oo}) = 0.
We define a function

¥, x € [-R,R]
Ri(1 — =Ry, x € [R,2R]
fir(x) = (—R)j(l 5 _R_R)’ x € [-2R,—R]

0 x € R\ [-2R,2R)]
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For any m and k so that m < n; — 1 we have
f SomR(X)dptn, < S (2.22)
Since fr is continuous on R we get

tim [ i 0 = [ FiaCoduto.

and thus
fme,R(x)d,u < Som
and the monotone convergence theorem implies that
f X" du(x) < Sop.
R

That is ¢ has finite moments. Dominated convergence, implies that

lim f Fir(Odu(x) = f (). (2.23)

Fix j and choose 2m > j and k sufficiently large so that n; — 1 > m. Then we have

f 1F0) — | i () < 2 f| i
X|>R

szf al
x>k | R

< 2R]_2m S$2m-

2m—j )
|l dpp (x)

Hence

tim [ Fiaodian 0= [ i 0 (2.24)

uniformly in k. Fix € > 0. Using that the limit in (2.23) is finite, we write
+ f fir(x)dp(x) — f Jir(X)dpy (x)

‘ f xldp(x) - f X dpy, ()| < ‘ f xdp(x) - f Jir()du(x)
f Jir()dptn, (x) = f Xl duy,

Using uniformity in (2.24) we can first choose R big enough so that the first and the
third expression are smaller than € for all sufficiently large k. Then we find kq so that
for k > ko the second term becomes smaller than e. Q

+

Combining these statements we have proven Theorem 2.3.1.

2.4 Weyl discs and Weyl m-function

From Corollary 2.1.24 it follows that T,(2) is J -expanding in C,.. Thus, considered as
a Mobius transform T,(z)~", by Lemma 1.2.4 maps C, = C, UR U {co} into itself. Let
us also introduce R = R U {co}. This motivates the definition of the Weyl disc
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2.4.1 Definition. For every n > 1 and z € C, the Weyl disc D, (z) and the Weyl circle
Cu(z) are defined by

D,@) =T, *717eT), N@={T@ " *rIrek}.

2.4.2 Lemma. For everyn > 1 and z € C, the Weyl circle I',,(z) is a circle in C, UR
with center c,(z) and radius r,(z) given by

_ Gn-1(2)pu(2) — qu(D)pn-1(2) _ 1
Cn(Z) - -~ —_— rn(z) - T =, <
Pn(@DPn-1(2) = pu-1(2)pa(2) |z — ZIKn(z, 2)

Proof. Note that since det T,,(z) = 1

4 (g1 —qa(2)
Tu() _(anpn-n(z) pn(z))'

The forumla for c,(z) follows readily from Lemma 1.2.2. The forumla for r, follows
from Lemma 1.2.2 together with the CD-formula (2.15). That C,,(z) must be contained
in C, follows from the fact that 7,(z) is J-expanding. Since r,(z) < oo, we conclude
that it is indeed a circle and not a half space. 4

2.4.3 Lemma. For everyn > 1 and z € C, the Weyl disc D, (2) is a disc in the upper
half plane. Moreover, the discs are nested, i.e.,

Dn+1 (Z) Cc z)n (Z)

Proof. We have T,.1(2) = A(z, ay+1,b,)T,(2). If M is a Mbius transform and § C @,
let us denote M(S) = {M * 7 | T € S}. Since A(z, ay, by-1) is J-expanding, we have
A(z, ay, by_1)"'(C,) c C,. It follows that

D12 = Tr1 (@7 (C1) = @' (A e, b) ™" (C)) € T2 (C) = Dula),

a

We will give an alternative description for the Weyl disc and the Weyl circle:

2.4.4 Lemma. Foranyz e C,, n > 1 we have

I n—1 I n—1
T(2) = {w | % = ; wpi(@) + qk(z)|2},ﬂ,,(z> = {w | ffn—j > ; wpi(@) + qk<z>|2}.

In particular D,(z) C C,.

Proof. Recall that w € T,(z) if w = T,(z)~™" % 7, for T € R. If f; denotes the Mobius
transformation generated by A as in Lemma 1.2.1 this is by definition

W= fr.o (1)
and hence,
Tu(2) * w = fr,0W) = fr,o) (.o (D) = froer,o1 (D) =T

Therefore .
T,(z2) xw=1€eR.
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This is,
Pn(@DW + gn(2) =
pn—l(z)w + Qn—l(Z)

which is equivalent to

(Pn@W + (D) (Pr-1@W + gn-1(2)) € R.

Inserting this into (2.14) yields that w € I',(z) if and only if

e
Imw

2
+ )
Tmz wpi(z) + gi(2)]

1
k=0

For the description of O, we note that the same arguments show that w € D, (z) if and
only if

Im(pa(2)w + Gn(2))(Pa-1 (W + gn-1(2)) 2 0.

Hence, the claim follows again by (2.14).

It remains to show that D, (z) c C,. Note that Imw = 0, implies that for 0 < k < n,
wpi(z) + gi(z) = 0. This implies that —g;(z)/pr(z) € R. Since T;(z)~' is J-expanding,
we see that

_ Z
@) = Ty % 0 = — L.
Pr(2)
is a Herglotz function. Thus if for z € C,, my(z) € R, it follows that my is constant. This
gives a contradiction. a

Recall that .
my(z,7) = To(2) ' x 1, T€R

and that by Lemma 2.3.2, the measure in its integral representation p, , is a solution of
the moment problem for 0 < j < 2n — 2. On the other hand, by construction

[,(2) = {ma(z,7) | T € R}.

Allowing 7 € C, and all solutions of the moment problem gives a corresponding relation
of D, (z). Let us introduce for a general finite measure y,

d
(D) = L u(x)

x—-z

Recall also that for measure with k finite moments, we denote

selpl = f X"dp(x).
2.4.5 Proposition. Forn > 0 and z € C, it holds that
Dy (2) = {Wp(Z) | selu] = s, 0 <k <2n -2},

Proof. Let us start with the inclusion C: As seen above, we know the statement already
for w € T',,(z). It thus suffices to take w € int(D,(z)). Since D,(z) is a circle, we find
wi,wy € I,(z) and 6 € (0, 1) so that

w=0w; + (1 — Ow,.
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Moreover, there are 71,7, € R with
w; = mn,‘r[(z)s i=1,2.

Now set
=0+ (1= Oty oy,

then clearly
Sj[ﬂ]ZSj, OSJSZI’Z—Z,

and
wu(2) = Omy 7 (2) + (1 = Omyy ,(2) = Owy + (1 — Owy = w.

We prove D: Let u be a solution of the moment problem for 0 < k < 2n — 2. Let ( pk)z;(l)
be the orthonormal polynomials associated to (sk)iiaz. Note that by assumption and
Lemma 2.1.9, they also form an orthonormal system in L?(u). Since y is a finite measure
fx) = %_z belongs to L?(u) and thus by Bessel’s inequality we get

n—1 2
[1rerduc > 3| [ roomeduca]
k=0
Since
P = ———L = 1_( L 1_),
X—2ZX—Z Z—2\X—Z X—2Z
we see that
f 1 COPduCx) = I“‘I:;“Z(Z).

On the other hand, for0 <k <n-1

n - 1
f FOPCIdu() = f %jk@dmxnpk@ f ) = i) + POV

Appealing to Lemma 2.4.4 shows that w,(z) € D,(2). a

2.4.1 Invariablity

Due to Lemma 2.4.2, D, (z) is a non-degenerated disc (i.e., not a straight line) and due
to 2.4.3 for fixed z, the discs D are nested. Hence, we can define

D@ = [ | Dul

and this will be either a disc or a point. It turns out that this is a property of the moment
sequence in the sense that D, (z) is a disc for one z € C, then this holds for all z € C,.
By Lemma 2.4.2, D(z) is a disc if and only if

r}er;O K, (z,2) = Z Ipe(2)* < 0.
=0

In fact, this also implies summablity if g.

2.4.6 Lemma. Letz € C,. Then D (2) is a disc, if and only if

D Upk@P +1gx(@)P) < oo, (2.25)
k=0
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Proof. From the discussion preceding the Lemma, we obtain that (2.25) implies that
Dwo(z) is a disc.
On the other hand, choose w € D, (z). Then Lemma 2.4.4 implies that

00

D wp@ + qu)P <

k=0
That is, (pr(2))e, (WPi(z) + qe(2) € €*(No) and thus also (qx(2))k € £*(No). Q

2.4.7 Lemma. Let A = (o))", such that

Imw
Imz’

ai;j =0 for j>=k and Z Iak,jl2 < 0.
k,jeN?

Then, there exists a constant C (depending on A) such that for any (y;) jen,, € £2(N),
there exists a unique solution (x;) jen, So that

k-1
Vi = X — Z X (2.26)
=0

Moreover, we have

Dl < )b,

k=0 k=0
ie, (I —A)"" € L,(£*(Np)).
Proof. Let A, = (ay, j)z;'lzo- Note that I — A is lower triangular. Therefore, for all n € N,
I — A maps (C"" ={(x)) € £ x; =0, 0<j<n-1}intoitself. Thus, uniqueness
of the solution follows from invertibility of /,, — A,, where I, is the identiy on C". Let

us first consider vectors in x",y" € C". Since (I, — A,) is invertible and as linear map
between finite dimensional Hilbert spaces bounded, we find C, so that

X"l < Cally"ll-
Let (y))jen, € £2(Ny) and (x i) jen, be the unique solution of (2.26). Moreover, for N € N

let xV = (xj)l;'zo. Set
k-1 |
: 2
n = min m'ZZ"’M' < 3(

k>m j=0

In the following assume that N > n. By the above it holds that

—_

n—

lx;1* < CallyllP. (2.27)
Jj=0
Set
k-1
JX)={n<k<N|lxl <2 Z Jag 12 <] -
j=0
Then

k-1 k=1
1
O b <4 30 S a P N <4 3 D a6 < 5

keJ(x) keJ(x) j=0 n<k j=0
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That is,

n—1
Dol < P > bl (2.28)
n<k<N k=0 n<k<N

keJ(x) ke J(x)

On the other hand, forn < k < N, k ¢ J(x) we have

k-1 k-1
1
T Z lag j1x;1 > ol - Z a2 [V > Sl
Jj=0 Jj=0
Hence,
1 2 2
7 2, b <l (2.29)
n<k<N
keJ(x)

Combining (2.27), (2.28) and (2.29), we get

N n—1

2 2 2 2
Dkl =l > P+ Yl
k=0 k=0

n<k<N n<k<N
k¢ J(x) keJ(x)

n—1
2 2
<2\ >l + D bl
k=0 n<k<N
k¢J(x)

< 2(C2+ Dyl*.

Since this estimate holds for all N > n, we conclude that

Dbl <2(Ch + Dy,
k=0

which finishes the proof.
2.4.8 Theorem. The following are equivalent:
(i) There exists zo € Cy so that ¥ (Ipu(2)I* + lgr(2)?) < oo;
(ii) For all 2o € C4 so that 3;2(Ipx(@)F + 1gx(2)?) < oo;
(iii) There exists 7o € C, so that D (z0) is a disc;

(iv) Forall zg € C, so that Dw(20) is a disc;

Proof. (i) < (iii) and (ii) <= (iv) follows from Lemma 2.4.6. We show
(i) & (). (ii) = (i) is trivial.

Assume that (i) holds. Then we have

Dllpz)l? <o and Y lguzo)l < .
k=0 k=0

Since @ @)
PnZ Pn 20 cP. .,
Z—20
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we find @, so that

n—1
P& = Pa0) N o2 (2.30)
z-20 P
Applying @ yields
) = o ZOZLE )
= e | ZOZLI) g OZ LD 1) - )

= Pr(0)4a(z0) + @ (%ﬁ)"(“)mm)

~ pulz)D (Pk(f) - Pk(Zo))

r—20
= pr(z0)gn(z0) — Pn(20)qr(20)-

Hence,

Z s (o) < 42 IP(zo)? Z k(@) < oo,

n=0

Invoking Lemma 2.4.7 shows that (px(2))xen, € ¢2(No), which concludes the proof. [

2.4.9 Definition. We say that a moment sequence s corresponds to an indeterminate
moment problem, if one (and hence all) of the properties of Theorem 2.4.8 hold.
Otherwise, we call the moment problem determinate.

2.4.10 Proposition. If s corresponds to an indeterminate moment problem, then there
is only one measure u, such that for every n € Ny

Sp = f)/’d,u(x).

Proof. Assume that there are up, (>, such that for every n, s, = s,[u1] = s,[u2]. Fix
z € C,.. Then Proposition 2.4.5 implies that w,, (z) and w,,(,) belong to D, (z) for every
n. Thus, they belong to D.(z), which implies that w,, (z) = w,,(;). Since this holds for
every z € C,, we conclude that w,, = w,,. Uniqueness of the measure in the integral
representation, cf. Theorem 1.3.5 shows that y; = uj. a

We will now focus on the case of an indeterminate moment problem. In this case, there
exists a whole family of solutions, which can be explicitly parametrized. We will end
this section by studying the functions, which will ultimately lead to the parametrization
of all solutions.

Recall the identity

-1

T (W) JT (Z) Z (Pk(Z)Pk(W) Qk(Z)Pk(W))
H\P@Dgrw)  qe(2)gr(w)
which needs to be interpreted appropriately if z = w. Define
T,(w)JT,(2) —z

Kz, w) = =2
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Since T,(0) € SL(2,R), we have T,(0)*JT,(0) = J and hence

J - JTn(O)_l Tn(z)

K (z,0) =

and thus
T,0)'Ty(2) = I + 2J%K,(z, 0).

Note also, that 7},(0) as a Mobius transform acts as a bijection from @+ to @+. We define
polynomials A, B,,, C,,, D,, by

A,(z) By(2)
Ci(2) Dy(2)

)=n@*n@.
Note that by (2.12) we have
det Tn(z)_lTn(O) = An(Z)Dn(Z) - Bn(z)cn(Z) =1.

Explicitly, we get

n—1 n—1
M@ =1+2) g@p0), B =2 ) qud)qu0),
k=0 k=0

n—1 n—1

Ci@D) =2 p@p0), Dy = 1-2 " p(2)gi(0).
k=0 k=0
Our goal is to show that, provided to s corresponds to an indeterminate moment problem,
A,, B,, C,, D, converge to entire functions as n — co.

2.4.11 Proposition. Assume that s corresponds to an indeterminate moment problem.
Then, for z in a compact subset of C,

D@, and ) lg@)P
k=0 k=0

are uniformly bounded.

Proof. We start with proving the claim for p;. Fix zop € C,. In Theorem 2.4.8 it is
shown, that there exists a Hilbert-Schmidt operator A = (ay ;) (depending on zp) with
ar,j = 0 for j > k, so that

k—1
Pi(z0) = pi(@) = (= 20) ) @i p(2).
=0

If v(z) = (pr(2));,> then we can write this as
v(z0) = (I = (2 = 20)A)(2).

That is,
v(z) = (I - (z — 20)A) W(zo).

We claim that

2 (I =(z—2)A)"! 2.31)
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is analytic and hence in particular continuous. To see this, fix z; € C and write
(I-(z=20A) = U= (z—21+21 = 20)A) = ([ = (21 —20)A)I = 2= 21)(I = (21 —20)A) ' A).

Now if z is so that
lz—zill = (z1 — 20)A) Al < 1

we can form the Neumann series for (I — (z—z1)(I - (z1 —20)A) "' A)~! to prove analyticity
of (2.31). Hence, for K C C there exists C > 0 so that

(I = (z—z0)A) 7' < C.

In particular, this shows that
[Iv@Il < Cliv(zo)ll,

showing uniform boundedness of

D Ip@)P.
k=0

The same proof works for 3.7 lgc(2)]?, once we know that

n—1

4n(2) = gn(20) + (2 = 20) Z @k (20)qk(2). (2.32)

Using (2.31) we find that

(D) = Palt) Zl (P2 = 20) = pr()t = 20)

z—t z—t ’
n\Z ) — Pn U
Pul20) = Pal®)._ Z @ k(20) pi(1).
20—t k=0

Subtracting these equations and applying @ proves (2.32). a

2.4.12 Theorem. The functions A,, B,, Cy, D, converge uniformly on compact subsets
of C and thus

A@ =1+2) q@p0),  BQ) =2 q@a(0),
k=0 k=0

C@=-2). p@p0), D@ =1-2)" pe@aq(0).

k=0 k=0

define entire functions. Moreover, we have

A(2)D(z) — B(z)C(z) = 1. (2.33)
Define
_ (A B@)
Wia):= (C(@ D(z))

Then, W is J-expanding on C, and

Do) = (W@ x 7| 7€C,}.
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Proof. We show the claim for A, A,. All other cases follow analogously. Fix K c C
compact and € > 0. Let C = sup,x 217 lge(2)I>. Let ng, so that for n,m > ng

- €
D IpO < =
C

k=m+1

Then, we get

n 2 n n
1A0(2) = A S(Z |qk(z>pk(0)|] < DT 1a@P Y IpO)F <€

k=m+1 k=m+1 k=m+1

Recall, that by definition of A, B,, C,, D,,, we have
An(D)Dn(2) — By(2)Cr(2).

Thus, sending n — oo proves (2.33). To show that W(z) is J-expansive is equivalent to
showing that W~l(2) is J-contractive. Define W,(z) = T,(2)~'T,(0). Then W, (z)"! =
T,(0)~'T,(z). Using that (T, (0)~")*JT,(0)"! = J, we get

W@ D' IWu@™ =T _ Tu@ (T IO ' T,@) = J _ Tu(@ITu(@) = J

= — — > 0.
Zi—Z Z—Z Z—Z

Sending n — oo preserved the inequality showing that W is J-expanding in C,.. For the
remaining claim note that 7,,(0) maps C, onto itself and thus that W,(z)(C,) = D,(2).
Using that D,(z) \, D«(z) and W,, — W, the last claim follows. a

2.5 Function theoretic approach to the moment prob-
lem

In 1922 Nevanlinna proposed to not work with the moments directly, but instead consider
asymptotic expansions of w, at co. We start with a definition:

2.5.1 Definition. Let Q c C be an undbounded set and 0 ¢ Q. A function f: Q —» C
has an asymptotic expansion in Q at oo, if there exists a; € C, k € Ny, so that for all

neNg,
n—1
. Ay
lim 7| f(z) — — | =a,.
lim [f() §Zk]

2€Q k=0

In this case we write

= a,

k

f(Z)N =
k=0 <

We will be mainly concerned with Q of the form
Qs={zeC\{0)|§<argz<7—6), 0<6< g

Induction shows that the a,s are uniquely determined by f, if they exist. However, a,
do not determine f uniquely. E.g. f(x) = e™* and g(x) = 0 have the same asymptotic
expansion in Q = (0, c0). We will if s corresponds to an indeterminate moment problem,
then every representing measure will have the same asymptotic expansion. Note also
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that the series 3,2 % in an asymptotic expansion can be divergent. It merely says that
the partial sums are good approximations of f in the sense that

n—1
a 1
f(z)—z—]]: =O(—n), z7— 00,7 € Q.
=0 é Z

The following argument will be used later. Assume that for some » and a,, € C.

n—1
o a |
ZILIEOZ [f(z) - Z Z_k] = —ay

k=0

This implies that

n—1 n=2
0= limz"! [f(z) > “—,’j] = lim 2! [f(z) - %] ~ a1,
‘ k=0 ° ‘ k=0 *

showing that

n=2
. n—1 Ay _
lim z [ﬂz)—zz—k]—an_l.

k=0

The following theorem is in this spirit and shows that the moments of a measure can be
seen from the asymptotic expansion of the corresponding Herglotz function. Recall that

1
WH(Z):fx_—zd'u(x)'

2.5.2 Proposition. Assume that y has n + 1 finite moments,

sk = silul = kady(x), 0<k<n
R

Then for any 0 < 6 < 7, it holds that

. S0 S1 Sn—1

lim 2" w2+ =+ 5 +... 2~ ) = —s,. (2.34)
7—00 z Z2 Zn

7€Qs

If u has n + 2 finite moments and n is odd, then this limit is uniform among all measures
with the same n + 2 moments.

Proof. Assume that u has n + 1 finite moments. It can be directly verified that

+—+... = —— (2.35)

Integrating this with respect to u yields

e ¥ xn+1
z””(f(z) PN nl) = —Zd,tt(x) = -5, +f du(x).
z Z X—z X—z

Thus, it is required to estimate the last integral. Note that for § < argz < 7 — § and
x € R it holds that
|x—z| > |z]sind, [|x—z| = |x|sind.
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In the first case, this can be seen by considering the ray, arg z = ¢ and realizing that for
fixed z the extremal configuration corresponds to Re z = x, i.e. |[Rez — z| = dist(R, z),
where one has equality. Any other x increases |x — z|. The second inequaliy can be
obtained in the same way by fixing x and varying z.

Assume first that also the s,,,; is finite and n + 1 is even. Then

n+1 1
al du(x) < f X dp(x) = (2.36)

|x —z| ~ |zl siné |z|sing”

Thus, we proved the uniformity statement. Without this extra assumption, we have for
arbitrary A > 0,

|-)C|n+l 1 n+1 1 n
du(x) < — ™ dp(x) + — |xI"dpa(x).
|x - Zl |Z| sin o (-A,A) sin o [x>A

Thus, for given € > 0, we can first choose A big enough to make the second integral
smaller than /2 and then for fixed A choose |z| big enough. a

Note that (2.34) is equivalent to

so 81 ) 1
w(@+—+—+-+ n1=0 ; 7 — 00,7€ Q.
z z ZVH’ ZV!+

The following proposition is a converse to this statement.

2.5.3 Proposition. Let f € Ny, n € Nand s; € R, 0 < k < 2n so that

il Son1 ) —Sam. (2.37)

. . . S0
tim (P (i) + 22 4 s 2L )
yooo iy  (iy)? (iy)>

Then f = w, for some p with
Sk = \fokd,u(x), 0<k<2n.
Proof. From (2.37) it follows that
Tim iy fiy) = =so
and hence by Proposition 1.3.10 there exists a finite measure u such that

d
£ = f KD _ @),
X—2

Since,

Reiyf(iy) = —yIm f(iy),
we conclude from the proof of Proposition 1.3.10 that lim,_, iy f(iy) = —u(R) and
hence sy = u(R). From (2.37) it follows that for all m < n

S1 . S$2m—1 —

@2 Gy

We proceed by induction over m. Assume that for m < n it holds that

lim (iy)*"*! (f(iy) + 20y —Sam. (2.38)
y—00 iy

kadu(x)zsk, 0<k<2m-2.
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Inserting this into (2.38) and using (2.35) yields

+ N2 ,2m—1
lim ( f o>, iys2m1) = —Som. (2.39)
y—o00 x—iy
In particular,
. 2m—1
lim f DX L (2.40)
y—oo X —1y

Splitting off the real part in (2.39) and (2.40) we get

2.2m

. y

lim —du(x) = so,

J—00 x2 +y2 ﬂ( ) 2m
2x2m—1

lim du(x) = sym-1.

yooo ) x2 4+ y?

By monotone convergence, we conclude from the first equation that

f X" du(x) = Som.

In particular, f |x|*"'du(x) < co. And hence, by dominated convergence, we get from
the second equation that

f " dp(x) = somet.
This finishes the proof. d
We get an alternative proof of Lemma 2.3.3.

2.5.4 Corollary. Let (sk)ii o be given and assume that (uc)een, are measures such
f Fdu,(x) = sp 0 <k <2n.

Then, there exists a convergent subsequence (u,)jen (in CRY). Moreover, for any
convergent subsequence and limit y = lim y,, we have

kadyn(x)zsk 0<k<2n-1.

Proof. That there exists a convergent subsequence follows again by Banach-Alaoglu.
Now take a convergent subsequence (u,,;) with limit 4 and define

1 1
Wy, (2) = f —du(x),  wu(2) = f —du(x).
i xX—2z xX—2z
Then, by (1.3.8) we conclude that
limw,, =w,
J J

uniformly on compact subsets of C... In the proof of Theorem 2.5.2, specifically (2.36)
we have shown that

S$2n-2 + SZn—l)
()=t iy

(i) (wmj i)+ 2ot <2
iy y
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which holds pointwise for all y. Sending j — co shows that

INA

(iy)™" (w”(iy) + 2 ey S22 S2n-1 )
y

. 20
(i)' (iy)* y’

which implies by Theorem 2.5.2 that

kay(x)zsk, 0<k<2n-1.

We are now ready to prove the main theorem of this section. Recall that

Wi - (A(z) B<z>)

Cl) D(2),
as given in Theorem 2.4.12.

2.5.5 Theorem. Assume that s corresponds an indeterminate moment problem. Define
the map

Tl p (2 W) *é(2)

Then E is injective and u € E[sI(Ny) if and only if

Sk[/l] =5, k€N 2.41)

Proof. That E maps into Ny follows from the fact that W is J-expanding. Injectivity
follows from the fact that W is invertivible and the uniqueness claim in Theorem 1.3.5.
Thus, it remains to determine the range of Z[s]. Assume that u is so that w,, satisfies
(2.41). Then, for fixed z € C,, w,(z) belongs to D,(z) for all n € Ny and thus to De, ().
Hence, Theorem 2.4.12 implies that

$(2) == W)™ * wu(z) € Cy.

We conclude that ¢ € No. .
It remains to show that for any ¢ € Ny, E[s](¢) is of the form

fdu(x)
x-z

for some measure u satisfying (2.41).

Recall that
. An(Z) Bn(Z) _ -1
Wn(z) L (Cn(z) Dn(Z)) - Tn(Z) Tn(o)
Jx ¢ = —%, which maps Ny onto itself, we can also consider

_ B,(z) -A,(2)
W@ = (Dn@ —cn<z>)'
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Let ¢ € Ny and assume that lim Im‘:;('y) > (. Define

B, (2)¢(2) — An(2)

Wi(2) = Wu()J *x ¢ = Dy)d—Co)

Using that A,(2)D,(z) — B,(2)Cn(z) = 1 we get

W) = B,(2) 1
" Dy(z)  Dy(x)(Du(2)¢(2) = Ca(2))
We have
n-1 n—1
G = =2 ) p@p0), Dy =1-2 " pe(2)gi(0).
k=0 k=0
Assume that g,,_;(0) # 0, then using lim Im‘:ﬂ > 0, we have
1 K&
Dy (iy)(Dy(iy)¢(iy) — Cp(iy)) 72 )’
Since
Bu(iy) = so $2n-2 ( 1 )
.ttt =o|— )
Dy(iy) iy (iy)¥! (iy)>-!
we have
W@+ g S o 1 (2.42)
S @t~ N\ 1) '

Let u, be the measure in the integral representation of w,. Then it follows from
Propostion 2.5.3 that

selpnl = sk, 0<k<2n-2.

If g,—1(0) = 0, then ¢,(0) # 0, since — q;" is a Herglotz function and thus has interlacing
zeros. In any case, we find a subsequence such that (2.42) holds. Sending n — oo and
appealing to Corollary 2.5.4 we conclude that

. _ B@)¢) - A®)
Jim w, (2) = DRD-CQ)

is a Herglotz function whose measure in the integral representation is a solution of the
moment problem.
It remains to discuss the assumption lim

ou(2) = %z + ¢(2). Then by the above, the statement holds for

Im‘;& > 0, if this limit is zero consider

B(2)¢n(2) — A(z)

0.8 = D en@ - CQ)

Since wg, — wy the claim follows again by Corllary 2.5.4.
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2.6 Are polynomial dense?
Recall that

I n—1
Dy(2) = {w Tz 2 e + qk<z>|2}.
k=0

and

D@ = () Dul@
Sending n — oo shows that
Imw
Deo(2) = {W | Tms 2 Z Iwpi(z) + Clk(Z)lz}~
mz 1=

If we are in the indeterminate case, this shows that for the unique solution of the moment
probplem g, it holds that

Imw,(z)

> > WP + gl
k=0

Imz

Let us briefly argue that in the indeterminate case we have
Imw
Fa(@) = 9D(2) = {w |4 = 2 @) + qk<z>|2} (2.43)
mz i3

In this case (gz), (px) € £2 and we can rewrite

Imw -
T = 2, @) + )P
mz
k=0
as
0= flw,w)
where

For ) = w3 Ip@P -2 +w [Z PGz ~7) - 1] +
k=0 k=0

W[Z @iz ~72) + 1] + (=9 la@)P
k=0

k=0

By continuity of f we get that w € [',(z) implies f(w, w) = 0. Moreover, we see that
{weC| f(w,w) =0} 1is a circle, since it is exactly of the form (1.2). Hence we have

o) c{weC]| f(w,w) =0}

and both are circles, which implies equality. In the determinate case we have D, =
{wu(2)} = I'us(z), where p is the unique solution of the moment problem.
Let s be a moments sequence and u be a solution of the associated moment problem.
We will investigate, when

P = span{7" | n € Ny}
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is dense in L?(u). Let (p,) denote the orthonormal polynomials associated to s. Note
that they are determined solely by s and that (p,,) form an orthonormal set in L?(u). For
f € L*(u), let ¢ denote its Fourier coefficients,

cp = ff(x)pk(x)d,u(x), k € No.

Moreover, let S,,(f) denote the partial sum

n

SN = > epit),

k=0

which is the orthogonal projection onto P, in L?(u).
For a finite measure u (not necessarily positive), define the Stieltjes transform by

1
Sy(Z)fo—_Zdll(x)

For positive measures, this is a Herglotz function and we have seen that in this case
the measure is uniquely determined by s,. The uniqueness proof in Theorem 1.3.4,
however also worksfor complex finite measures. In fact, there is an explicit formula
for reconstructing the measure, which we provide without proof. It is called Stieltjes
inversion formula:

£1\m0 ja‘b Su(x + i€)dx = %,u({a}) +ul(a+Db))+ %#({b}).
2.6.1 Theorem. Let s be a moment sequence and p be a solution of the moment problem.
Then the following are equivalent:
(i) There exists zg € C, so that w,(20) € I'n(20);
(ii) For all zp € C, so that w,(20) € T'wo(z0);
(iii) P is dense in L*(u);
(iv) (Pnnen, form an orthonormal basis of L2 (u);

Proof. Clearly (ii) = (i) and (iii) & (iv).
We show (iv) = (ii). Fix zo € C,. Then f, (x) = ﬁ € L>(u). As in the proof of
Proposition 2.4.5 we see that

Cp = f S Opr(0)du(x) = wu(20)pi(z0) + qi(20)

and I )
mw,(Zo

I foll2a,) = ———
w Im zg

Since the (py) for an ONB, we get

_ Imw,(z0)

D Wa@0)pitzo) + qezoP = D lewl? = 1|12, =
k=0 k=0

Imzg

and hence by (2.43), w,(20) € I's(20).
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It remains to show (i) = (iii): Let H = clos P, where the closure is taken in L?(y).
By the above computation, the assumption implies that f;, € H. We want to show
that f3 € H, for n > 0. Assume that it holds for n. Then we find P € % so that
1f7 — Pllzz < €Im(zo). Writing P(z) = (z — 20)Q(2) + a, where a = P(zp), we get

1
5" - afo - Q”’%z(/‘) - flx—— |fzr(l)(x) —a—(x— ZO)Q(JC)|2 du(x)

2ol

1 2 2
< m”f‘zo _P”Lz(/,l) <€

since af,, + Q € H, we conclude that f7*' € H. Suppose now that g € L*(u) is
orthogonal to H. Then consider
()
5() = f S du(x).

X—=2Z

It follows that s?(zy) = O for all n € Ny and hence being analytic in a, we conclude
that s = 0. That is g(x)du(x) = 0 and thus g = O i a.e. Hence g = 0 in L>(i) and thus

H=L*). Q

Let us end this section with an easy to check criteria for determinacy of the measure.

2.7 Two criteria for determinacy

First we show that if i does not have a heavy tail, then u corresponds to an determinate
moment problem.
If u is a finite measure on R, we introduce its Fourier transform by

@) = f e du(x), £eR.

Since |e~¢| = 1, it is clear that
A& < p®)

and [1 is continuous. Moreover, since
Ape™ = (=i x*
if u has k finite moments then 1 is k-times differentiable and
k(e = i) [ ekt
In particular note that
*OL0(0) = selu]. (2.44)

2.7.1 Lemma. Let u,v be finite measures on R. If ft =V, then u = v.

Proof. Let f be a Schwartz function. Then, by the inversion formula for the classical
Fourier transform

f FOdu(x) = f FYOe Ededu(x) = 2 f FAOREE.
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Thus,
f J)du(x) = f S(x)dv(x)

By densitity of the set of Schwartz function this holds for any f € Co(R) and thus
V= 4

Let us introduce

|mw=fW@m
2.7.2 Lemma. It holds that

Je>0: feelxldp(x) <oo & IAC>0: |spl[u] < CH k!,

Proof. By monotone convergence,

f eMdu(x) = lim Z M.

e k!
Now if the limit is finite, then eventually

sl [u] 1

K "2

and thus, with C = max{1/e, 1/2} we have |s;|[u] < C**'k!. Likewise, if |s;| [u] <
CH1k! then
€ |sil [
k!
Thus, the series converges for € < 1/C. a

< C(eO).

2.7.3 Proposition. If there exists € > O such that

f eMdu(x) < oo,

then u corresponds to an determinate moment problem. In particular, this holds for all
compactly supported measures.

Proof. Since for & € C, |e™#*| < eMIm¢,

ﬂ@=ff%ww

is analytic in a strip I, = {£ € C | |Im €| < €}. If v is a another measure with the same
moments, then by Lemma 2.7.2 ¥ is also analytic in a strip /. By (2.44) we conclude
that

A©0) = 4©0),  Vk € N,.

By the identity principle, we conclude that i = ¥ and hence by Lemma 2.7.1, v = p.
This finishes the proof. d

The second criterion will be in terms of summability of the moments.
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2.7.4 Lemma. Let s be a moment sequence and a, the associated Jacobi parameters
by Proposition 2.1.12. If
i 1
— = oo,
an

n=1
then s is determinate. This holds in particular if sup a, < co.
Proof. We show that s being indeterminate implies that L e ¢'. Fix z9 € C, and assume

that s is indeterminate. By the Wronski identity (2. 12)

1
- = pn—l(ZO)qn(ZO) - qn—l(ZO)pn(ZO)

n
Theorem 2.4.8 implies that (p,,(20))n, (¢(20))n € €> and thus ai el Q
We want to translate this into a condition on the moments sy.
2.7.5 Lemma. Let (a j)?zl e R". Then

n n

1 l

Proof. Wehave 1 +x <e*so(l+ %)" < e and thus, inductively,
n" <ée'n!.

Indeed,
1 n
(n+D”1=m+lm«l+—)Se”%n+DL
n

Thus,

1 L (k) Lk
=——I[]=] =35> -
(ap...ap'i — (jH'i o1 Gk 7 a
by the arithmetic-geometric mean inequality. Thus,

n n

jz; (ar...q; )”’

since

Jj=k ‘] Jj=k Jj=k
a
2.7.6 Corollary (Carleman’s condition). If
1
D =, (2.45)
=1 Sog

then the moments problem is determinate.
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Proof. By Proposition 2.1.12, p,(x) = alj.(fa + g(x), where g € $,,_;. Thus,
xl’l
< ,Pn(X)> =1
ayp...dy
Thus, by Cauchy-Schwarz
! < ! .

a2 = )
By Lemma 2.7.5, (2.45) implies that (al) ¢ ¢! and hence Lemma 2.7.4 shows that the
moment problem is determinate. d

2.8 Kirein’s density theorem

In this section we prove a criterion of indeterminacy. Let u be a probability measure
on R and write du(x) = w(x)dx + du, its Lebesgue decomposition. Since log* ¢ < ¢, for

t > 0, we have
dx dx
< [ log™ < <1.
O_fog w(x)1+x2_fw(x)l+x2_

is integrable if and only if

flog_ w(r) dx 5 <00

1+x

1 dx
- |1
bis f 0gw(x) 1+ x2

1 dx
2|1 o
bis f 0gw(x) 1+ x2

is often called the entropy integral. We will use the following Lemma from complex
analysis, which can be concluded from residue’s theorem.

log w(x)

Hence, Firw

or equivalently, if

> —o00.

The integral

2.8.1 Lemma. Let P be a polynomials so that P(z) # 0 for Imz > 0. Then
o _ 1 [ log|P(x)]
log|P(i)| = = | ———dx.
og () = - [ “EE D

Recall that

n—1

Ki@w) = ) pi@p;(w) = a

=0

pn(Z)pn—l(W) - pn—l(Z)pn(W)
z-w ’

We require one more lemma
2.8.2 Lemma. All zeros of z — K,(z,1) belong to C_ = {z | Imz < 0}.
Proof. Letz € C, UR and assume that K,(z, /) = 0. This implies that

_ Pn(2) __ Pn(D)
Pue1@  pua(i)
Since by Corollary 2.1.27 Im -2 0, for every z € C,, this gives a contradiction.

Pu+1(2)

Q
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2.8.3 Theorem. Let u be a probability measure with density w such that

1 dx
— | logw(x)——= > —c0.
bis f gwl )1 + x2
If all moments of u are finite, then the corresponding moment problem is indeterminate.

Proof. We have

X 1

‘«:ﬂmwm%mwsifmmewm=im@a

d
1+x2 " &

1fWMﬂ%m
Vs

On the other hand, by Jensen’s inequality applied to the probability measure 1 -4

7 1+x2°

X

d 1 2 dx
T+ 2 < log(;flKn(x, 0] w()c)1 +x2)'

1 .
;fﬁwmmem
Combining this we find
2 . dx 1 dx 1 ..
; flog(IKn(x, l)|)m + ; flog W(X)m < 10g (;Kn(l, l)) .
Since x — K,,(x, i) has all zeros in C_, we conclude from Lemma 2.8.2 that
1 . dx .. ..
= | log(IKu(x, D) —— = log|K,(i, i) = log K, (i, 1).
n 1+ x2

Therefore,
d

X
1+ x2°

1
log K,,(i,i) < —logm + — flog w(x)
n
Recalling that

n—1

Kiiyi) = > Ipj )P,
Jj=0
Theorem 2.4.8 proves the assertion. |
2.8.4 Example. For a > 0, consider the family of measures
dpto(x) = coe ™ dx,
where ¢, is a normalizing constant. Then, by Theorem 2.8.3, the moment problem for
MU 1s intederminate, if @ < 1 and by Proposition 2.7.3 it is determinate for @ > 1. If

a = 2, then the corresponding orthogonal polynomials are the well-studied Hermite
polynomials.

2.9 Connection to Operator Theory

We will see that the extremal solutions encountered in Theorem 2.6.1 appear as spectral
measures of self-adjoint extensions of Jacobi operators associated to an indeterminate
moment problem.



52 CHAPTER 2. ORTHOGONAL POLYNOMIALS AND JACOBI MATRICES

2.9.1 Unbounded operators

We give a short revision on unbounded operators.
In the following let H be a Hilbert space. An unbounded operator, A, is a linear map
from a subspace D(A) c H into H. The set D(A) is called its domain. A is called
densely defined, if D(A) is dense in H.
Its graph is denoted by

I'(A) = {(Au, u) | u € D(A)}.

Note that I'(A) is a subspace of H @ H, that is, a linear relation. We call A closed if
I'(A) is closed. We call B an extension of A if I'(A) c I'(B), that is, if D(A) Cc D(B)
and Blp) = A. A is then called a restriction of B. We also write A C B. A is called
closeable, if it has a closed extension.
It is not hard to see, that a linear relation, S, is the graph of an operator, if and only if
(0,w) € S implies that w = 0. From this it then follows that A is closeable if and only if
T(A) is the graph of an operator. The closure A is then defined by [(A) = T(A).
Let A be a densely defined operator. The domain of its adjoint D(A*) is the defined as
follows

veDA") < AweH:Vue DA) (Au,v) = (u,w).

It is now easy to see that since A is densely defined, w is unique and we set A*v := w.
Let us introduce J : H & H — H & H —, by J((u,v)) = (—v, u). Then it follows that

[(A") = JT ()"
We collect some properties which are all not very hard to show.
2.9.1 Lemma. Let A be an unbounded densly defined operator. Then it holds:
(i) A* is closed;
(ii) kerA* = (ranA)*;
(iii) A is closeable <= A" is densely defined;
(iv) If A is closeable, then A= A™;
(v) If A is closeable, then (A)* = A*;
(vi) If A C B, then B* C A*;

We turn to symmetric and self-adjoint operators and von Neumann’s extension theory.
An operator A is called symmetric if

I'A) cT(A") & Yu,ve D) : {(Au,v) = {u, Av).

An operator is called self-adjoint, if A = A*.
If A is symmetric, z € C\ R, u € D(A), then one can show that

(A = 2)ull = Im z]ju].

In particular, ker(A — z) = {0}, i.e., A has no nonreal eigenvalues.
If A is symmetric, than A C A*. It is thus, desirable to look for self-adjoint extensions,
Bof A. Inthiscase A C B= B* C A*.
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Let A be a densely defined, closed symmetric operator. We define the defect spaces
K, :=ran(A £ i)* =ker(A* F1i)

and the deficiency indices
d: =dimK..

The Cayley transform, C, : ran(A + i) — ran(A — i), of A, is defined by
Ca=(A-DA+D)".

It is a convenient tool, since it maps, as we will see symmetric operators into isometries,
which are bounded.

2.9.2 Lemma. Let A be a densely defined, closed symmetric operator. Then Cy4 is an
isometry from ran(A + i) onto ran(A — i).

Proof. We only need to check that it is an isometry. Since A is symmetric we have for
any u € D(A)
A = Dul’ = Al + lull® = 1I(A + i)udl .

For u € D(A) and w = (A + i)u we have
ICawll = (A = Dull = |I(A + Dul| = [[wl].

a

Thus, we see that finding self-adjoint extensions of A is equivalent to finding unitary
extensions of Cy4. This is possible if d, = d_. All self-adjoint extensions are found by
all surjective isometries from K, to K_. Let V : K, — K_ be such a map, then

is a unitary map on H = ran(A + i) ® K, = ran(A — i) ® K_. The domain and and the
action of the corresponding self-adjoint extension can explicitly computed.

2.9.3 Lemma. Let A be a densely defined, closed symmetric operator with equal
deficiency indices. Let B be a self-adjoint extension and C its Cayley transform. Then

D(B) = D(A) + (1 = Cy)K.
and for u € D(A), k, € K, we have
B(u+ (1 - Chky) = Au+i(1 + Caks.
Note that since k, € K, we have
Caks = Vki,

where V is as above.
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2.9.2 Unbounded Jacobi matrices

Let s be a non trivial moment sequence an (p,) the associated orthonormal polynomials.
They satisfy

Z2Pn(2) = An11Pns1(2) + bppp(2) + anpp1(z), n =1
zpo(z) = a1 p1(z) + bopo(2).

This induces an operator on £2(Ny). Recall that J acts on sequences u € C™° by
(ju)n = ApylUpsl + bnun +ayup-1, n= 1
(Ju)o = ayuy + bouo.

We define the maximal operator

D) = {1 € £2No) | Ju € C(M)).
and
Jmax = T DU ay)-

For n > 1, the Wronskian of two sequences u, v us defined by

Wa(u, w) = an(unvn-1 — tp-1vy).
The following Lemma may be interpreted as a version of Green’s formula.
2.9.4 Lemma. For any u,v € D(J,q)

Iim W,(u,v) = We(u,v), exists

and
(Tmaxths V) =ty Ipaxv) = Weo(u, v).

Proof. A direct computation shows that

=5 _ Wl’l+](u’ ‘_}) - Wn(u’ V), nz= 1’
(dexu)nvn un(Jmaxv)n - { Wl (u’ v)’ n= 0.

Summing of n gives

n

Z(Jmaxu)nvn - Z Uy (JmaxV)n = Wir1(u,v).
=0

=0
Since u, v, Jmax, JmaxV € €2(Np), we can send n — oo on the left-hand side and obtain
(Jmaxtts V) = Uty Jiaxv) = im = W1 (1, V) = Weo (1, V).

Q

To search for self-adjoint restrictions of Jy.x, we look for its adjoint. Let ff(No) denote
the set of those elements of £*(Ny) which are compactly supported. Let J, be the
restriction of Jyax to D(Jp) = é’f(No).

2.9.5 Theorem. It holds that J§ = Jypax and Jo is the restriction of Jinax to

D(Jo) = {v € D(Jmax) | Weo(t, 7) = 0, Yt € D(Jpar)}. (2.46)
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Proof. First note that Jj is densely defined. We start by computing its adjoint. Assume
that v, w € £>(Np) satisfy

(Jou, vy = {u,wy, Vu € L*(N).
Since KZ(NO) is the span of (e,)xen, this is equivalent to
(Joen,v) = (e, w), VneNy
which is equivalent to
Api1Vy + byvy + apv_y = wy, V0 € Ny,

(with the convention that v_; = 0). Thus, this holds if and only if (v, w) € I'(Jjnax). This
shows that Jj = Jiax. In particular Ji. is a closed extension of Jy and thus, Jo is also
a restriction of Ji.x. It remains to show (2.46). Let the set in (2.46) be denoted by D;.
Note that J_o = (J§)* = Jhax- The definition of the adjoint together with Lemma 2.9.4

implies that D; c D(J,,ax"). To show the opposite, note that J . = Jo is a restriction

max
of Jmax. Thus, for any v € D(J},,) and u € Ji,x we have

(Jmaxtts V) = (U, T V) = (it Jmax V).

Again, Lemma 2.9.4 now implies that W, (u,v) = 0 and thus v € D;.

2.9.3 Concrete realizations

We will now apply the above theory to obtain self-adjoint extensions of Jj, whose
spectral measures will be solution of the moment problem. Let us define

7‘:{ (M), () = (P

(eizo = (Yoo cpr(x).

Note that for u, v € £2(Np)
(Fu,Fvyy ={u,v).

Since £2(Np) is complete and £2(Np) forms a dense subset, we see that ¢ = ¥ ! provides
a completion for (P, (-, -);). Note that by construction we have that for any v € £2(Np)

FJov = xFv.
Thus, by induction and linearity it follows that for any polynomial p,
FpUolv = px)Fv.

Now assume that J is a self-adjoint extension of J, with spectral measure E, i.e.,

J:fxdE.

fxndEeU,eo(x) = (J"eq, e0) = (F J"ep, Fep)s = (x"Feg, Feghs = (x"1, 1)s = s5,.

Then, since F ey = 1, it follows that
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That is dE,, ., is a solution of the moment problem. We will now assume that s
corresponds to an indeterminate moment problem. Then we can extend ¥ to £2(Ny) and
by Proposition 2.4.11

o

Fu= Z Uk Pk

k=0
defines an entire function. o .
Let us now compute K. for Jy. That is K. = ker(Jo F1i). Since (Jo)* = J§ = Jmax, WE
are looking for v € £? such that
Jv = Fiv.
Note that the solution space is 1 dimensional and since (p,(Fi))nen, € £2(Ny), it follows
that
K = span{(pu(Fi))new,} = span{(pn(£i))nen, }

Let

ky = (pn(ii))neNo-
Note that

F(ke) = D pa@pa(d = lim Ky (2, ).
n=0

Since K. are only one dimensional, the unitary maps correspond to multiplication by a
unimodular constant. Thus, we can find all self adjoint extensions of Jo, via the unitary
maps

Vyk+ =vyk-, Wl=1

Let J, be the corresponding self adjoint extension and C, its Cayley transform. Then,
by Lemma 2.9.3 we have

D(J,) = Do) + (I = C)K.
and for u = uy + cky, c € C,

Jyu = Jug +ictky +vk_).

2.9.6 Theorem. Let |y| = 1 and J, be the corresponding self adjoint extension with
spectral measure EY. Then w, = E} . is a solution of the moment problem which is
extremal in the sense of Theorem 2.6.1.

Proof. We already know that y, is a solution for the moment problem. Thus, it suffices
to show that for some z € C,

o

= > W, @Dpe(@) + w@P, (2.47)
k=0

Im Imw,, (2) ()

Imz

Forz€ C\R,letR,(z) = (J,, - 2)~!. Note that by the functional calculus,

dE,, ¢,
Wy (2) = f sz = (Ry(2)eo, eg).

Let us set

v(z) =F,

X =2z

1 (Pk(x) - Pk(Z)) .
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Then we see by linearity of ¥ that
Uy = 2@ = F ' () = pr(@) = ek = pel@)eo,

ie.,
R, (2)(ex — pr(2)eq) = v(2).

Thus, we get

(Ry(2)eo, ex) = (Ry(2)eo, ex — pr(2)en) + (R, (2)eo, pr(Z)eo)
= (eo, R, (2)(ex — pr(2)e0)) + pr(2){Ry(2)eo, e0) = {en, v(Z)eo) + pr(2)w, (2)
= q(2) + pr@wy, (2).

By Parseval’s identity, we have
IR, (Deoll? = > KRy(2)eo, e0)l.
k=0

On the other hand, applying the resolvent identity, we get

R,(2) - R, I ()
IRy eoll = (Ry(@Deo, Ry @)eo) = (Ry @Ry (e, e0) = <Meo,eo> ST
-2 Imz
That is, (2.47) holds. (|

2.9.7 Remark. In fact, one can show that any measure, extremal in the sense of Theorem
2.6.1 is obtained in this way.
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Chapter 3

Spectral theory of periodic
Jacobi matrices

From now on we will restrict to the case that all coefficients are bounded, i.e., sup,,(la,| +
|b,|) < co. By Lemma 2.1.17 this implies that J is a bounded self-adjoint operator. By
Theorem 2.1.16 this corresponds to a unique moment sequence, which is determinate,
say by Carleman’s condition. Let i denote the solution of the moment problem. Recall
that we defined F : £2(Ny) — P by
F(cpy) = ) cxpil),
k=1

where p; denote the orthogonal polynomials associated to J. In particular Fey = 1.
Moreover, since the moment problem is determinate, ¥ is dense and we can extend 7
to a unitary operator from £2(Ny) to L*(R, ). Let E denote the spectral measure for J.
Then we have seen that

fxndEen,eo =(J"ep, e0)p =(F J"ep, Fep)z = (x"1,1) = fxndu(X)-

By determinacy of the moment problem, we conclude that E, ., = . Finally, we note
that
en =T pu(x) - 1= pa(NF 1 = pulJeo.
Thus,
span{p(D)e, | p € P}
is dense in £>(Ny). That is, ey is a cyclic vector for J. Since J is unitarily equivalent to
the multiplication operator in L*(R, u) it follows that

o(J) = supp p.

Thus, in order to study the spectrum of J it suffices to study y, respectively the corre-
sponding Herglotz function. By the functional calculus, we have

() 1= (T = 2 eo e0) = f dp)

x—z
We will clarify the meaning of the sub-+ in the next section. From now on we will
restrict our consideration to Jacobi parameters that are periodic, i,e, there exists some
p>1sothatforalln e Z

Apyp = Ap, bn+p = b,.

59
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3.1 Two-sided Jacobi matrices

For periodic Jacobi matrices, it turns out that for several reasons it is more natural to
extend a,, b, by periodicity to sequences on Z. Thus, given periodic Jacobi parameters
(aw)nz1, (bu)n=0, we consider there extension to Z be demanding that

Ap+p = Ap, bn+p = b,.
for all n € Z. In the following, let J act on sequences in CZ by
(Ju)y = apstUpsr + bplty + anity,_y.

Since all coefficients are bounded, one can show as in Lemma 2.1.17 that J defines an
bounded self-adjoint operator in £2(Z). In the following let e, denote the standard basis
of £2(Ny) or €*(Z), which should always be clear from the context. Let ﬁ = 2(Ny), &2 =
{*(Z o) and P, denote the orthogonal projections from ¢(Z) onto £2. Moreover, define
the finite range operator F : £*(Z) — (*(Z) by

Fv) = {(v,eq)e_1 + (v, e_1)ep.

Define
J.=P,JP,.

Then we have
J=J,+J_+ayF. (3.1

Thus, J is a finite dimensional perturbation of the diagonal operator J_ + J,. We will
now prove an analogo of p,(J;)ey = e, for two-sided Jacobi matrices. We call (y,),cz a
formal eigensolution for J if it solves

Aps1Yne1 + DpYn + ApYn-1 = 2yn.

The phrasing formal, highlights the fact that we do not require that y belongs to the
domain of J. Let (u,), (v,) be formal eigensolutions for J with initiall conditions

u_1 =0, wuy=1, v =1, wuy=0.

Thus, for positive n, u,, v, are essentially the orthonormal polynomials of first and
second kind for J,. Then we have

3.1.1 Lemma. Foranyz € Z,
e, = va(DNe_1 +u,(J)eg.

Proof. Let
Un = Vn(J)e—l + un(J)eO'

Then ¢; = e, for j = 0,—1. Thus, it suffices to show that
Jn = anirPnrt + bpin + ann-1.
Since u, v are formal eigensolutions, by the functional calculus for J, we have that
Jup(J) = aps1ttn1(J) + butn(J) + anttn-1(J),

and the same holds for v. Thus, the claim follows. a
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This motivates, that for J it is more natural to work with e_;, ¢;. We define the matrix
valued Green function

M) = (G—l,—l(Z) G—l,o(Z)) _ (((J -2 e, en) ((U- Z)_l€0,€—1>)
Go-1(z)  Goo) (J=2e_r,e0)  (J—2)"eg,e0) )

We also introduce
m-(2) = (-~ e ecr), mi(@) = (4 — 2 eo, o).
By means of (3.1) we can express M in terms of m.. and ay.

3.1.2 Lemma. Forz € C\ R we have

mﬁmWI“Oy

ap  m(2)”!
In particular, the diagonal of the Green function are given by

1
m_(z)°
1

—_— = 2 —_—
Goo® -9

- = 2 —
G.11(2) Goms(2)

Proof. We have
J—z=J,+J_—z+apF.

Thus, applying the second resolvent identity we get
-2 =i+ =2 —a(J -2 'FU, +J_ -2\

Now taking scalar products with respect to e_; and ey and using the diagonal structure
of J_ + J, we get

G_1-1=m_—aom_G_yp,
G_10=—-aom,G__i,
Go-1 = —agm_Gy,

Goo = my —agm,Go_1.

That is
1=m2'G_i_1 + ayG_1y,
0=m;'G_19+aoG_i -1,
0 =m-'Go1 + aoGoy,
1= m;lGoyo + CloG()!_l.
and thus

1 0 _ G,l’,l G,l,() m:l ao
0 1) Go-1 Goo ap m;' ’

which finishes the proof. The formulae for the diagonal entries now follow easily. [}
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3.2 Coefficient stripping and periodic discriminant

Let Jfrl) denote the Jacobi matrix that is obtained from J, by deleting the first row and
column. That is
T = I + bo(-, eodeo + arF,

where
Fy =, eper + (-, er)eo
Let
mP@) = (P~ er ).
3.2.1 Lemma. Forz € C\ R we have
1

mE) = ——————.
@ z2—bo +atmV(2)

Proof. Let H = (-, eg)ep. Then, as in the proof of Lemma 3.1.2 we get by the resolvent
identity that

s =2 =P+ boHY " —ar(J, — ) Fo (I + boH) .

We get
-1 1 1 -1
((J+ —2)" eo, €0) = Pt ((J+ —2) " er, e0),
0—2 by -z
(s =2 er, e0) = —aim P @m(z).
Inserting the second equation into the first yields the Lemma. a

Note that this can be written as
1

0o -1
m(z) = (m ﬂ] * m(z),

ap

that is

z=bp 1
mV(z) = ( ay 8) * m(z) = Az, ay, by) * m(z), (3.2)

where
z=b 1
Az a,b) = (_a O,)
was defined in (2.8). By periodicity, we clearly have that
m? @) = m.(2).

Recall, that we assumed that the Jacobi parameters are p-periodic. We use the represen-
tatives
ay,---ap, and, bg,---b,y.

Then, we have
T,(2) = A(z,ap,bp1) - - Az, a1, bo)

and
T,(2) = A(z, a0, bo) - - - Az, ap-1,bp-1).
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Let pjif denote the orthonormal polynomials associated to J.. Then we have

Py @) q,(2) ) T_():( py(@ 9,2 )

_app;,l(z) —dpq;,l(z) p —app;,](Z) _apq;,l(z).

T,(2) = (
3.2.2 Proposition. We have

Py =Py @y =Ppts Ppot = pdps pt = 4o

Proof. We have the factorization

Let

We get that for general a, b, @, 8
-b -1\, (: 0
Az a,b AR @B = (Z o )JA(Z, a,ﬁu(g a)

€
Applying this to all factors of 7',(z)T and multiplying from the left with B = j( v f )
and from the right with B~! shows that

: aL 0 - T Clp O . +
g )@ (o 1)i=T@. (3.3)
Looking at the entries of this identity proves the claim. a

3.2.3 Theorem. The function m.(2) is a solution to the quadratic equation
0 = a(@m(2)* + B@Im(2) + ¥(2), (34
where
a(2) = app, 1(2), P@ =p,@) +apq, 1@, Y@ =q,Q@.
The second solution to this equation is (aim_(z))".
Proof. By periodicity and (3.2) we have
m.(z) = T (2) * m(2).

That is
Pp(Dmi(2) + q,(2)

Pr1(@me(2) + qp-1(2)
To show that (a;m_(z))~" is the second solution, we first note that

_apm+(z) =

m_(z) =T, (z) * m_(2).

Using (T,j(z))‘1 =JT,@)" J~" and (3.3) we obtain that

L 0\(0o 1 L 0\(0 1
+ ap =%
TP(Z)(O ap)(l 0) xm-) (0 ap)(l 0) xm-()
This shows that m(z) = (afjm_(z))’1 is a solution to the quadratic equation. Since

fm(z) maps C, onto C_ it cannot be equal to m, and thus it is necessarily the second
solution. a
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Let us define the discriminant by
A@) =t Ty(2) = p,(2) — apq, ,(2)
Then using the Wronskian identity (2.12) we see that

BR) = 4a(@)y(2) = (py(@) + apg;_ ()2 — 4a,p;_(2)qH(2)
= (py(2) — apqy () = 4ap(ph_ (g5 @) — Py (D)g5_ () = AR’ — 4.

Thus, we get that the two solutions of (3.4) are obtained by

B@) £ VAR)* -4

apP;_l (@)

m(z) = —

This motivates why we will study properties of the discriminant A.
Let us introduce the auxiliary function

_ AQ)
g(@) = —app;_l @

3.2.4 Lemma. The function g(z) is a Herglotz function. Moreover, zeros of A and 1’;71
strictly interlace. In particular, all zeros of A are real and simple.

Proof. We have
P; () Q;_l ()

app, () app, (2)

8@ =

Thus, by Corollary 2.1.27 and (2.16) it is the sum of two Herglotz functions and thus a
Herglotz function. Let us now show that A(z) and p;_l (z) can have no common zeros.
Assume that xy € R is a zero of p;fl(z) and of A. Then by the Wronskian identity, we
have

-1= apP;(xO)Q;_l (x0).

That is, p; (xp) and q;_] (xp) have opposite sign. On the other hand, 0 = A(x() implies
p;(xo) = apq;_l (x0). A contradiction. As in the proof of Corollary 2.1.27 we see that
the zeros of A and P;A strictly interlace. Since p;l has p_1 simple real zeros and
g(z) ~ zas z — oo we get that A has at least p zeros, one between each zero of p;_l
and one to the left of the first and one to the right of the last zero of p;_ 1- Since Ais a
polynomial of degree p, we conclude that it has p real simple zeros. a

In the following, we collect the characteristic properties of A. A point c is called critical
point of a function f, if f'(c) = 0.

3.2.5 Theorem. A has the following properties:
(i) Ais real;
(ii) All zeros are real and simple;

(iii) All critical points are real and if c is a critical point, then |A(c)| > 2.
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Proof. (i) is clear since p; and q;_l are real. (i) was already shown in (3.2.4). It
remains to show (iii). Let first xo be a zero of p;_l. As in the previous proof, we
conclude that p;,(x) and —apq;_l(xo) have the same sign and —apq;_l(xo)p;(xg) =1.
Thus, we conclude from the AM-GM inequality, that

Ip; (x0) — apq;,_; (xo)|
L 5 i > ‘/—a,,q;l(xo) =1.

Let y;, y» be two consecutive zeros of A. By simple counting, there is exactly one critical
point ¢ of A. Due to interlacing, there is also a zero, xy of p;_l. Thus, we conclude that

IAC)l = |A(xo)| = 2.

This shows the last claim. 4
Let us define the set

E=A""(-22D) = {zeC|A® € -2,2}.
Then there exist bg <a; <b; <a, <b, <---<a,_; <b,_| <agsuch that

p-1
E = A™'([-2,2]) = [by, a0] \ |_J(a;, b)),

=1
with the convention that (a, a) = 0. Moreover, there is exactly one critical point A; of A
in each gap (a;, b;). Note that a; = b; if and only if |A(4;)| = 2. The sets [b},a;.1] are
called bands of the spectrum. The open intervals (a;, b;) are called gaps and the sets
[bj,aj.;] bands. A gapis called closedif a; = b;. We call the pointsa;,b;, 0 < j < p—1
gap edges.
By definition of E, we can take an analytic square root of A(z)*> — 4 in C,. That is,
there exists a function g, which is analytic in C, such that g(z)*> = A(z)> — 4. Denote
8@ = VA - 4.
Let us fix a branch of the square root and then analyze the argument of /A(z)? — 4 as
z approaches R. Let us recall that powers of analytic functions are defined using the
logarithm, and in its turn the logarithm of a nonvanishing function f, is defined as the
primitive of f’/f. This allows us to analyze the argument of the boundary values of

vVA(z)? — 4 along R. We choose the branch of the square root so that y/A(z)? — 4 for
z € [bg, oo]. By considering the integral

(Aw)* - 4y

Aup—4

locally around a zero of A(z)*> — 4, we see that at every zero (counting mulitplicity) of
A(z)* — 4 the argument of 4/A(z)? — 4 increases by /2.

Note also that for any (c, d) C R which contains no zero of A(z)?> — 4, 4/A(z)? — 4 has an
analytic extension to C, U (¢, d) UC_. In particular, for (c,d) c R\E, g(z) = VAZ —4is
real valued, and thus, by the reflection principle, the analytic extension obeys, @ = g(2).
This, shows that y/A(z)? — 4 has an analytic continuation to C \ E.

We need to recall certain facts from complex analysis. Let €, (2, be two connected open
subsets of C, where C denotes the Riemann sphere. We call a function f : Q; — Q,
conformal, if f is holomorphic and has a holomorphic inverse. The map

D — C\[-22
f:{ \[-2.2]

[ o i+l (3.5)
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is conformal and is called the Zhukovsky map. Recall also that if Q is simply connected
and f : Q — C so that f does not vanish on €, then there exists an analytic g : Q — C
such that f = e8.

3.2.6 Proposition. There exists analytic B : C \ E — D such that

1
A(z) = B(z) + %

Morover, there exists ® : C, — C, such that B(z) = ¢?®9. Thus, for z € C; we have
A(z) = 2cos(pO(2)).

Proof. By definition A maps C\ E onto C \ [-2,2]. Thus, if f is the Zhukovsky map,
we can define B(z) = f~!(A(z)). From this all claims about B follow. Since f maps 0 to
oo and A is finite on C,, it follows that B does not vanish on C,. Hence we can define

0) =~ log BE)
p

Since |B(z)| < 1 in C,, it follows that Im ®(z) > 0. a

3.2.7 Remark. Let us recall that the branch of log is only unique up to adding 27xik for

some k € Z. Thus, any

®=®+§f,kez
P

would also be a suitable choice. We will fix the choice of the branch of log later.

O has the interesting property, that not only ®, but also i®’ is a Herglotz function.
Factorizing A’ and A? — 4 we have

p-1

1
AP —4=——— l_[(Z —a;)(z—b)),

2
(ai...ap) i=0

p-1
N = —1—[]e-1)

ay...ap =1

This will be a consequence of the following formula.

3.2.8 Lemma. Forz € C, we have

" i @-4))
0'(x) = ﬂ@ - 1HZ J
gVAR)? -4 \/nygo(z—a,)(z—b,)

This function has an extension to C \ E, which obeys ©’(z) = -0’ (z) and —i®’(z) > 0
for z € (bg, 00).

Proof. Since A = 2 cos(p®) and A? — 4 does not vanish in C, we can fix a branch of

the square root so that
VA? — 4 = =2isin(p®).

Differentiating gives the first identity. The product formula follows from those for A’
and A? — 4. Since VA? — 4 has an analytic extension to C \ E the same holds for ©’.
Again from the sign of ® and VA2 — 4 it follows that —i®’(z) > 0 is positive in (by, o).
®’(z) = —®’(z) now follows by Schwarz reflection principle applied on (by, o). a
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For our data 4;,a;, bj, let us define

0, x € (=00, by),
i, t€E,

&n=4 1, re(a;),
0, te (/lj, bj),
1, t € (ag, )

3.2.9 Proposition. i®’(z) is a Herglotz funnction. There exists C > 0 such that

i0/(2) = Cel (-t Jewar (3.6)
Moreover, for
1 = =4
dv(1) = xe(?) “ o0
v XE (7 = a0)(7 = bo)] 1:1[ |(z —a;)(#— b))l
we have
i®'(2) = f 0 G
11—z
and v(R) = 1.

Proof. Let & be as above and define
g(z) = ef(i—ﬁ)f(r)dt.
Note that since & < 1 for z = x + iy we have

. ; ~ Endt dt =
Imf(: - m)g(t)dt_yf(t—ﬂﬂyz Syf(t—xz)+y2 -

1 _ _t_
t-z 1+£2

which implies that g is a Herglotz function. Since a primitive for

2)/ V1 + 12) we get

is log((t —

ol [ (1 i) L

1+¢ ay—z

Similarly we see that there is C such that

1 (1 t aj;1 — 2

= — - ——|dr|=C
exp(szj (t—z 1+t2) ] : b; -z
1 (Y1 t -z
= — = dt|=C .
eXp(zfaj (t—z 1+,z) ) 2aj—z

Combing this, we find that there is C3 such that
H?:l (Z - /l])
3 .
Y -a)c-b)

and C, such that

g =C
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Since & = 1 on (ag, ), g < 0, there. Thus, we conclude that C3 = —C, for some C > 0.
Combining this with Lemma 3.2.8, we conclude (3.6). Since i®’(z) is real valued on
(=00, bg) and (ag, =), by the Stieltjes inversion formula, the measure v in the integral
representation of i®’ is compactly supported. Moreover, since i®’(z) ~ —z~! for z — oo,
B = 0 and we conclude that there is a € R such that

i0'(x)=a+ f dv(t).

-z

Since v is compactly supported, sending z — oo on both sides shows that @ = 0. Finally,
Stieljes inversion shows that v is of the form (3.7).

Since
fdv(t) v(R) (1)
—— ~————+o0o|—-|, 7> oo,

t—2z Z Z
we conclude that v(R) = 1. a

3.2.10 Remark. From the represenation (3.6), it is easy to derive, that with the appropri-
ate choice of the square root,

— 1 =
i®/(z) = —16'!["0»301\5 ’T«””:(I)d’,

V(z —ag)(z — bo)
where &(r) = 1 if r € (a;, 1)) and &) = -1 if 1 € (1), b)).

We will now derive an integrated version of (3.8).

3.2.11 Lemma. There exists a branch of log B such that on C,,

0(z) = —ilog((a ...ay)"'?) +i f log(z — £)av(t). (3.9)

Proof. Both sides of the above equality are analytic functions in C,, whose derivative
coincide by (3.8). Thus, there is ¢ € C such that

Bk =c+ iflog(z — Hdv(1).

To find ¢ we will compare the asymptotics as z — oo in C,, with the branch of the log
with —r < Imlog < 7.

Since v is supported on E and uniformly for 6 € E, log(z —7) — logz = log(1 —¢/z) = 0
as z — oo and v(R) = 1, we have

iflog(z — Ndv(t) = ilogz + o(1). (3.10)
We have
A(Z) — eip@(z) + e—ip@(z) — e—ip@(z)(l + eZip@(z))
and
ZI’
Az) ~ , Z— 00, (3.11)
ay...ap

Since by construction ¢©?@ — 0 as z — 0, z € C,, (1 + €*P9@) — [ as 7 — co. By
(3.10),
—i0(z) = logz —ic + o(1).
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Hence
e—ip@(z) o e—ipczp

Comparing this with (3.11) shows that ¢ = —i/plog(a; . ..a,) + 2rk/p, for some k € Z.
At this place we choose the branch of log ®, so that k = 0. This proves the claim. [

From now on, we will choose the branch of @, that corresponds to (3.9).

3.2.12 Proposition. O extends continuously to C, U R This extension obeys the follow-
ing:

(i) Im® =0, on E,

(ii) Re® = -1 + in, onla;,bjlforl <j<p-1,
(iii) Re ® = —1 on (—o0, by),
(iv) Re® = 0 on [ag, o).

Proof. We start with proving that ® has a continuous extension. Since ®’ is ana-
lytic at R except at a;,bj, it is clear that ® can be continuously extended to R \
{ao, bo, ...,a,_1,b,_1}. Let « be one of those points. Then for some € > 0 small enough,
we can write ©’(z) = ,I_Kf (z), where f(z) is analytic in U := (Bc(k) N (Cy NR)) \ {«}.

Hence, for z € U and a € U fixed we can write

1

u-—K

4
o0 =0+ [ Fodu.
Integration by parts now shows that the right-hand side can be continuously extended to
K.
By continuity, this extension obeys A(z) = 2 cos(p®(z)). We have A(z) € [-2,2] on E,
s0 O(z) € R. Since @’ is purely imaginary in gaps (a;, b;), we conclude ©(a;) = O(b;).
Meanwhile, p®(z) € nZ if and only if z is a band edge. Since ®" > 0 at band interiors,
this implies that ®(a;,;)-0O(b;) = ;—;, for each j. It follows that ®(ap) — ®(bg) = 7. From
(3.9) it follows that for z > ay Re ®(z) = 0. This proves all claimed statements. ]

From the reflection principle, we get analytic extensions for ® to C \ E.

3.2.13 Corollary. The analytic extension of ® through C, U (a;,b;) U C_ obey
S j
07 = -0(z) - 2n(1 - ;).

3.2.14 Remark. Define on C,
L(z) = Im O(2).

Then
L(z) = —log((ay ...a,)"'?) + f log(|t — z)dv(t).

In fact, one can show that this defines a positive harmonic function in C, \ E, that
extends continuously C which is zero on E. From this one can connect it to two
functions appearing in the literature. First of all L is the potential theoretic Green
function of the domain C \ E with logarithmic pole at co and v is the equilibrium
measure of the set E. Secondly, in spectral theory, L is called the Lyapunov exponent
and the distribution function of v is called the integrated density of states.
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3.2.15 Lemma. If f : C, — Cis analytic with Re f* > 0 on C,, then f is injective.

Proof. For any a,b € C,, a # b, by the mean value theorem

re L@ = £®)
a->b

So f(a) # f(b). Qa

For any injective analytic map f on C, let us denote IT = f(C,). Clearly II is connected
and by the open mapping theorem, II is open. Thus f : C, — Il is a conformal map.

=Ref(a+tb-a)>0, te(0,1)

3.2.16 Lemma. Let f : C, — C be analytic, injective and extends to a continuous map
on the closure of C, in C. Then f(0C,) = OIL

Proof. All toplogical notions are used in the topology of the Riemann sphere. Since f
is continuous, we have f(C,) c f(C,). Moreover, f(C,) is compact as the continuous
image of a compact set. In particular, it is closed. Thus,

1= f(Cy) € f(Cy) C £(Cy),

and hence f (C,) =TI

Let zo € C, and wy = f(zo). Let 6 > 0 such that Bs(zg) € C,. The set U = f(Bs(z0))
is open, so for € > 0 small enough, it contains B.(wp). Since f is injective, it follows
that for all z € C, \ Bs(z0), |f(z) — w| > €. By continuity, the same holds for z in the
boundary of C,. Thus f(0C,) N f(C,) = 0. Thus,

f(0Cy) = f(C)\ f(C,) =TI\ I = II1.

Let
hj=Im®O(4;)
and
-1 .
{—n+ lﬂ+it|0<t$h,~}.
» :

P
II={zeC|-m<Rez<0}\
j=1

By Lemma 3.2.15, the function © is a conformal map. This map was first applied in
spectral theory in the setting of continuum Schrodinger operators by V.A. Marchenko
and I.V. Ostrovskii and thus bears the name Marchenko—Ostrovskii map.

3.2.17 Corollary. The Marchenko-Ostrovskii map ® is a conformal map from C, to L

3.3 Direct spectral theory of periodic Jacobi matrices

We will now investigate spectral properties if periodic Jacobi matrices.
3.3.1 Definition. e say that z € C is a Dirichlet eigenvalue, if p,_((z) = 0. o

Let J,_; be the truncation of J onto CP7! that is

b() a
aq b] ay
Jp1 = a .. (3.12)

ap-1
ap-1 bp_z
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3.3.2 Lemma. Dirichlet eigenvalues are real and xy € R is a Dirichlet eigenvalue, if
and only if it is an eigenvalue of J,_y.

Proof. By Corollary 2.1.27, p,_; has real and simple zeros. Let xq be a zero of p,_;.
Then, it holds that p_;(xy) = 0, po(xp) = 1 and

Xopo(xo) = bopo(xo) + a1 p1(xo),
Xopj(x0) = ajr1pjr1(x0) + bjpi(x0) + ajpj—1(x0), 1<j<p-3

and using that p,_;(xp) = 0

Xopp-2(x0) = bp2pp-2(x0) + ap2p;3(xo).

That is, (po(xo), . . ., pp-2(x0))T is an eigenvector of J,_; to the eigenvalue xo. Now let A
be the set of Dirichlet eigenvalues and B the set of eigenvalues of J,_;. Since |A| = p—1
and |[B| < p—1and A C B, it follows that A = B. a
Recall that

- VAR -4

2app;_1 (2)

m.(z) = (3.13)

where B(z) = pj,(z)+a I,q;_l (z) and A(z) = p,(2)— apq;_] (z). It is now clear that with the
choice of the square root such that /A(z)? — 4 > 0 for z > ay, that m, (z) corresponds
to the solution of (3.4) with a minus sign. For the other choice of the sign leads to a
behavior m(z) ~ z as z — oo. Hence we also have

1 B@) + VA(2)? - 4' (3.14)

C@m()) 2a,p @)

3.3.3 Lemma. Ifty is a Dirichlet eigenvalue and A(ty) = £2, then B(ty) = 0.
Proof. We claim that p;(ty) = ~a,q;,_,(t9) = +1, which clearly implies that (1) = 0.
Assume that A(f) = p;(tO) - apq;_l(to) = +2. By the Wronskian identity we have
—1 = a,p),(to)q,_, (o). Hence,

Pi_i(t) £2p?_(19) = 1 =0,

implying that P;,l(fo) = +1 and hence —apq;l(to) ==l. Q

3.3.4 Lemma. [ft, is a Dirichlet eigenvalue, then |B(ty)| = | \/ml.
Proof. Again by the Wronskian identity, we have
A(x0)* — 4 = (p}(x0) — apqs_y (x0))* — 4 = (P} (x0) — apqys_ (x0))* + 4p; (x0)apqs_, (xo)
= (py(x0) + apq;_ (X0))* = B(x0)’.
Q

We can now fully characterize the spectrum of J,. Let u, be the measure in the integral
representation of m,.. Let us write y, into its Lebsgue decomposition with respect to
Lebesgue measure, i.e., du,. () = w.()dt + du(t), where i is singular with respect to
Lebesgue measure.
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3.3.5 Theorem. The operator J, has essential spectrum E. On E, u, is purely absolutely
continuous with density

1| VF = AGP2
e () = xe(~ LDy, (3.15)

7T aplpp-1(0)]

The discrete spectrum of J. corresponds to those Dirichlet eigenvalues which lie in open

gaps (aj, b;) and for which
B(to) = = VA(1)* - 4.

That is

dyu(t) = xe@wo(Ddi + ) ki,
[’p—l(f):o

where k; > 0 if and only if t lies in an open gap and B(f) = — \JA(£)? — 4.

Proof. Note that Imm,. has a continuous extension to any interval of R, which does not
contain a Dirichlet eigenvalue. Thus, y, cannot have a singular continuous part. By
Corollary 1.4.3, the abolutely continuous part is supported on E and given by (3.15). By
(1.4.4), the pure point part of . must be supported at the set of Dirichlet eigenvalues.
If # is a gap edge, then by Lemma 3.3.3, u,({fto}) = 0. Likewise, if ¢, is a Dirichlet
eigenvalue which is not a gap edge, then by Lemma 3.3.4, VA(#y) = +8(t), and we
see that VA(fy) = B(ty) corresponds to u({to}) = 0 and VA(#y) = —B(ty) corresponds to
H+({to}) > 0. a

Recall that

! a? (m+(z) - %] (3.16)

G- ~ azm-(2)

Hence, by (3.13) and (3.14) we have

1 al\AR)? -4

Gaa® @)

Since, G_1 _1(2) ~ —% as z — oo this implies that

M7 -1
G 1) = = . (3.17)
G -a)G b))
Completely analogous to the proof of Proposition 3.2.9 one can show that
G_1_1(z) = _—leflbo-am\s ig(’)d’, (3.18)

V(z —ao)(z = bo)

where &(r) = § if 1 € (a;,1;) and €(t) = -1 if € (1, b)).

If f: C, — Cis a function such that for x € R, lirré f(x + ie) exists, in @ then we write
€E—

f(x+1i0) := lin(}f(x + i€).
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3.3.6 Lemma. For all 7 € int E we have

1

—— = m,(x +i0). (3.19)
a(z)m,(x + i0)

Moreover, G_| _; is purely imaginary on int E
Proof. This follows immediately from the explict formulae for m, and from (3.17). [

For reasons that go beyond the scope of these lecture notes, the property (3.19) is called
reflectionless property. We are now able to characterize the full spectral data, that allows
us to recover m_ and m,. Let 0 < g < p — 1 be the number of open gaps and let &;, b s
0 < j < g be the gap edges that correspond to these open gaps. Likewise, let 7; denote

Dirichlet eigenvalues belonging to [, b il. Moreover, for 1 < j < g, we set

1, f; is pole of my,
g;:= .
g -1, otherwise

We will see that the full spectral data is the set E and the collection of points ((7;, 8_,')5];1 ).
Note again by the explicit formulae for m., if 7; € (a;, b ), then 7; is either a pole of m.,
or a pole of —m='. However, there is a certain ambiguity, since at gap edges it is a pole
of neither of these functions. Thus, to set £; = —1, in this case is somewhat arbitrary. It
would be correct to identify in this case (7;, 1) and (7;, —1). With this identification, the
set {(t,&) | t € [a;, Bj], g; € {—1, 1}}, can be identified with the torus R/Z.

7 ]

3.3.7 Theorem. Forz € C, it holds

L)

?

N =

1
2 - —_— . —
a,m.(z) = ( G (z+a)+ j

o
2\l

8

=1
g
=1

| 1 1 €0
—— =5 t&+ + P
m_(z) 2( G T JZ”_Z)
where
JIE G )G~ by ; g +bo+ @+, - 20)
oy = — , and, a==|ag+by+ » (3;+b;-2f)].
, [ Ta (B — 7)) 2 I

Proof. We have

1

= a§m+(z) - r@

G_1-1(2)
All involved functions are Herglotz functions with integral representations. The explicit
formulae show that all measures in the integral representations are purely absolutely
continuous on E and possibly mass points at 7;. Let us first discuss the absolutely
continuous part. The reflectionless property (3.19) shows that, ai Imm,(x + iO) and
Im—m_(}c 0 coincide on intE. Thus, the absolutely continuous part in the integral
representations of both functions coincide. If w_;_; and w. denote the densities of
am,, and —mZ', then (3.16) shows that w_ = w, = 1w_;_;. Now the

1
G_1-1(2)

___ 1
G.11(2)°
measure of —

has point masses exactly at the Dirichlet eigenvalues belonging to
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open gaps. Since we have already seen that in this case it is either a pole of a%er or of
—m~", the point masses must coincide in this case. By Corollary 1.3.7, the point mass
can be computed by

(fk — 2) \/ [Ty — a))(@ — b))
i Goi(d) e ;G — 1)

Note that o, = 0, if 7 is a gap edge.
Consider the function

1 1 g &0
—_] — + — e
2 G,l,,l @ ; tj—2z

By what we have argued, the measure in the integral representation of this function has
the same absolutely continuous part as a(z)m+. Also the mass point coincide, because if
gj=1thenthe massis 1/2(cj +0;) = ojandif ¢; = -1, thenitis 1/2(c; — o) = 0.

Thus, it remains to discuss the linear term « + S8z.
Expanding —m at oo, using

1

Since — ~ z, -m-"(z) ~ zand m,.(z) ~ -z as z — oo, we see that z must

_1
Go1-1(2)

be subtracted from — in order to fit the behavior of m.(z). Finally, expanding

1
G_11(2)
—m at co with the help of (3.18), we find that

1

_—G—l,—l(Z) =z+a+o(l).

Since m.(z) ~ —z~!' at co we see that this term must be subtracted form —m to get

alzjer (z). Likewise, due to (3.16) it must be added to m_(z). This finishes the proof. [



